Для школьников и родителей
  • Главная
  • Поделки
  • Как легко запомнить формулы приведения. Формулы приведения. Урок и презентация на тему: "Применение формул приведения при решении задач"

Как легко запомнить формулы приведения. Формулы приведения. Урок и презентация на тему: "Применение формул приведения при решении задач"

Они относятся к разделу «тригонометрия» в математике. Суть их заключается в приведении тригонометрических функций углов к более «простому» виду. О важности их знания написать можно много. Этих формул аж 32 штуки!

Не пугайтесь, учить их не надо, как и многие другие формулы в курсе математики. Лишней информацией голову забивать не нужно, необходимо запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить!!!» – это значит, что действительно, это необходимо именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

Перечислю лишь некоторые задачи, которые будут на ЕГЭ по математике, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например:

– задачи на решение прямоугольного треугольника, где речь идёт о внешнем угле, да и задачах на внутренние углы некоторые из этих формул тоже необходимы.

– задачи на вычисление значений тригонометрических выражений; преобразования числовых тригонометрических выражений; преобразования буквенных тригонометрических выражений.

– задачи на касательную и геометрический смысл касательной, требуется формула приведения для тангенса, а также другие задачи.

– стереометрические задачи, по ходу решения не редко требуется определить синус или косинус угла, который лежит в пределах от 90 до 180 градусов.

И это лишь те моменты, которые касаются ЕГЭ. А в самом курсе алгебры есть множество задач, при решении которых, без знания формул приведения просто не обойтись.

Так что же к чему приводится и как оговоренные формулы упрощают для нас решение задач?

Например, вам нужно определить синус, косинус, тангенс или котангенс любого угла от 0 до 450 градусов:

угол альфа лежит пределах от 0 до 90 градусов

* * *

Итак, необходимо уяснить «закон», который здесь работает:

1. Определите знак функции в соответствующей четверти.

Напомню их:

2. Запомните следующее:

функция изменяется на кофункцию

функция на кофункцию не изменяется

Что означает понятие — функция изменяется на кофункцию?

Ответ: синус меняется на косинус или наоборот, тангенс на котангенс или наоборот.

Вот и всё!

Теперь по представленному закону запишем несколько формул приведения самостоятельно:

Данный угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Функцию на кофункцию не меняем, так как у нас 180 градусов, значит:

Угол лежит в первой четверти, синус в первой четверти положителен. Не меняем функцию на кофункцию, так как у нас 360 градусов, значит:

Вот вам ещё дополнительное подтверждение того, что синусы смежных углов равны:

Угол лежит во второй четверти, синус во второй четверти положителен. Не меняем функцию на кофункцию, так как у нас 180 градусов, значит:

Проработайте мысленно или письменно каждую формулу, и вы убедитесь, что ничего сложного нет.

***

В статье на решение был отмечен такой факт – синус одного острого угла в прямоугольном треугольнике равен косинусу другого острого угла в нём.

Как не заучивать формулы приведения.

При решении тригонометрических уравнений или совершении тригонометрических преобразований первым делом нужно минимизировать количество различных аргументов тригонометрических функций. Для этого нужно все углы привести к углам первой четверти, воспользовавшись формулами приведения . Я хочу познакомить вас с мнемоническим правилом, которое позволяет не заучивать . Это правило в шутку называется "Лошадиное правило".

В этом ВИДЕОУРОКЕ я расскажу, как пользоваться этим правилом: приводить тригонометрическую функцию произвольного угла к углу первой четверти, освободив себя от необходимости запоминать формулы приведения:

Итак, "лошадиное правило " звучит так:

Если мы откладываем угол от вертикальной оси , лошадь говорит "да" (киваем головой вдоль оси OY) и приводимая функция меняет свое название : синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс.

Если мы откладываем угол от горизонтальной оси , лошадь говорит "нет" (киваем головой вдоль оси OХ) и приводимая функция не меняет свое название .

Знак правой части равенства совпадает со знаком приводимой функции, стоящей в левой части равенства.

Приведу несколько примеров использования формул приведения:

1 . Найти значение выражения:

1. Выделим целую часть в дроби :

2. Так как период функции равен , выделим "холостые обороты":

Теперь наш аргумент находится в пределах от нуля до , и самое время применить "лошадиное правило":

Чтобы попасть в точку, соответствующую углу поворота на , мы сначала совершаем поворот на радиан, а потом из этой точки откладывает угол радиан:

Мы отложили угол от горизонтальной оси (лошадь говорит "нет") - не меняет свое названия, угол расположен в третьей четверти, в которой косинус отрицателен, следовательно приводимая функция отрицательна. Получаем:

2 . Найти значение выражения:

Разберемся по отдельности с каждой функцией:

Мы сначала совершаем поворот на радиан, а затем откладываем угол 1 радиан от вертикальной оси в отрицательном направлении и попадаем в третью четверть:

Следовательно, приводимая функция меняет свое название, приводимая функция больше нуля (тангенс угла третьей четверти больше нуля): .

Сначала совершаем поворот на радиан, а затем из этой точки двигаемся на 1 радиан в отрицательном направлении. Откладываем угол 1 радиан от горизонтальной оси (синус не меняет свое название) и попадаем во вторую четверть, в которой синус больше нуля:

Как запомнить формулы приведения тригонометрических функций? Это легко, если использовать ассоциацию.Данная ассоциация придумана не мной. Как уже говорилось, хорошая ассоциация должна «цеплять», то есть вызывать яркие эмоции. Не могу назвать эмоции, вызываемые этой ассоциацией, позитивными. Но она дает результат — позволяет запоминать формулы приведения, а значит, имеет право на существование. В конце концов, если она вам не понравится, вы же ее можете не использовать, правильно?

Формулы приведения имеют вид: sin(πn/2±α), cos(πn/2±α), tg(πn/2±α), ctg(πn/2±α). Запоминаем, что +α дает движение против часовой стрелки, — α — движение по часовой стрелке.

Для работы с формулами приведения нужны два пункта:

1) ставим знак, который имеет начальная функция (в учебниках пишут: приводимая. Но, чтобы не запутаться, лучше назвать ее начальной), если считать α углом I четверти, то есть маленьким.

2) Горизонтальный диаметр — π±α, 2π±α, 3π±α… — в общем, когда нет дроби — название функции не меняет. Вертикальный π/2±α, 3π/2±α, 5π/2±α…- когда дробь есть — название функции меняет: синус — на косинус, косинус — на синус, тангенс — на котангенс и котангенс — на тангенс.

Теперь, собственно, ассоциация:

вертикальный диаметр (есть дробь) —

пьяный стоит. Что с ним случится рано

или поздно? Правильно, упадет.

Название функции изменится.

Если же диаметр горизонтальный — пьяный уже лежит. Спит, наверное. С ним уже ничего не случится, он уже принял горизонтальное положение. Соответственно, название функции не меняется.

То есть sin(π/2±α), sin(3π/2±α), sin(5π/2±α) и т.д. дают ±cosα,

а sin(π±α), sin(2π±α), sin(3π±α), … — ±sinα.

Как , уже знаем.

Как это работает? Смотрим на примерах.

1) cos(π/2+α)=?

Становимся на π/2. Поскольку +α — значит, идем вперед, против часовой стрелки. Попадаем во II четверть, где косинус имеет знак «-«. Название функции меняется («пьяный стоит», значит — упадет). Итак,

cos(π/2+α)=-sin α.

Становимся на 2π. Так как -α — идем назад, то есть по часовой стрелке. Попадаем в IV четверть, где тангенс имеет знак «-«. Название функции не меняется (диаметр горизонтальный, «пьяный уже лежит»). Таким образом, tg(2π-α)=- tgα.

3) ctg²(3π/2-α)=?

Примеры, в которых функция возводится в четную степень, решаются еще проще. Четная степень «-» убирает, то есть надо только выяснить, меняется название функции или остается. Диаметр вертикальный (есть дробь, «пьяный стоит», упадет), название функции меняется. Получаем: ctg²(3π/2-α)= tg²α.

Для использования формул приведения существует два правила.

1. Если угол можно представить в виде (π/2 ±a) или (3*π/2 ±a), то название функции меняется sin на cos, cos на sin, tg на ctg, ctg на tg. Если же угол можно представить в виде (π ±a) или (2*π ±a), то название функции остается без изменений.

Посмотрите на рисунок ниже, там схематично изображено, когда следует менять знак, а когда нет.

2. Правило «каким ты был, таким ты и остался».

Знак приведенной функции остается прежним. Если исходная функция имела знак «плюс», то и приведенная функция имеет знак «плюс». Если исходная функция имела знак «минус», то и приведенная функция имеет знак «минус».

На рисунке ниже представлены знаки основных тригонометрических функций в зависимости от четверти.

Вычислить Sin(150˚)

Воспользуемся формулами приведения:

Sin(150˚) находится во второй четверти, по рисунку видим что знак sin в этой четверти равен +. Значит у приведенной функции тоже будет знак «плюс». Это мы применили второе правило.

Теперь 150˚ = 90˚ +60˚. 90˚ это π/2. То есть имеем дело со случаем π/2+60, следовательно по первому правилу меняем функцию с sin на cos. В итоге получаем Sin(150˚) = cos(60˚) = ½.

При желании все формулы приведения можно свести в одну таблицу. Но все же легче запомнить эти два правила и пользоваться ими.

Нужна помощь в учебе?



Предыдущая тема:

Урок и презентация на тему: "Применение формул приведения при решении задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса
1С: Школа. Интерактивные задания на построение для 7-10 классов
1С: Школа. Решаем задачи по геометрии. Интерактивные задания на построение в пространстве для 10–11 классов

Что будем изучать:
1. Немного повторим.
2. Правила для формул приведения.
3. Таблица преобразований для формул приведения.
4. Примеры.

Повторение тригонометрических функций

Ребята, с формулами привидения вы уже сталкивались, но так их еще не называли. Как думаете: где?

Посмотрите на наши рисунки. Правильно, когда вводили определения тригонометрических функций.

Правило для формул приведения

Давайте введем основное правило: Если под знаком тригонометрической функции содержится число вида π×n/2 + t, где n – любое целое число, то нашу тригонометрическую функцию можно привести к более простому виду, которая будет содержать только аргумент t. Такие формулы и называют формулами привидения.

Вспомним некоторые формулы:

  • sin(t + 2π*k) = sin(t)
  • cos(t + 2π*k) = cos(t)
  • sin(t + π) = -sin(t)
  • cos(t + π) = -cos(t)
  • sin(t + π/2) = cos(t)
  • cos(t + π/2) = -sin(t)
  • tg(t + π*k) = tg(x)
  • ctg(t + π*k) = ctg(x)

формул привидения очень много, давайте составим правило по которому будем определять наши тригонометрические функции при использовании формул привидения :

  • Если под знаком тригонометрической функции содержатся числа вида: π + t, π - t, 2π + t и 2π - t, то функция не изменится, то есть, например, синус останется синусом, котангенс останется котангенсом.
  • Если под знаком тригонометрической функции содержатся числа вида: π/2 + t, π/2 - t,
    3π/2 + t и 3π/2 - t, то функция изменится на родственную, т. е. синус станет косинусом, котангенс станет тангенсом.
  • Перед получившийся функцией, надо поставить тот знак, который имела бы преобразуемая функция при условии 0

Эти правила применимы и когда аргумент функции задан в градусах!

Так же мы можем составить таблицу преобразований тригонометрических функций:



Примеры применения формул приведения

1.Преобразуем cos(π + t). Наименование функции остается, т.е. получим cos(t). Далее предположим, что π/2

2. Преобразуем sin(π/2 + t). Наименование функции изменяется, т.е. получим cos(t). Далее предположим что 0 sin(t + π/2) = cos(t)



3. Преобразуем tg(π + t). Наименование функции остается, т.е. получим tg(t). Далее предположим, что 0

4. Преобразуем ctg(270 0 + t). Наименование функции изменяется, то есть получим tg(t). Далее предположим что 0

Задачи с формулами приведения для самостоятельного решения

Ребята, преобразуйте самостоятельно, используя наши правила:

1) tg(π + t),
2) tg(2π - t),
3) ctg(π - t),
4) tg(π/2 - t),
5) ctg(3π + t),
6) sin(2π + t),
7) sin(π/2 + 5t),
8) sin(π/2 - t),
9) sin(2π - t),
10) cos(2π - t),
11) cos(3π/2 + 8t),
12) cos(3π/2 - t),
13) cos(π - t).

Лучшие статьи по теме