Для школьников и родителей
  • Главная
  • Поделки
  • Синтез белков происходит с участием. Синтез белка в клетках мышц

Синтез белков происходит с участием. Синтез белка в клетках мышц

Процесс синтеза белка в клетке называется биосинтезом. Он состоит из двух основных этапов - транскрипции и трансляции (рис. 4.5). Первый этап - транскрипция генетической информации - процесс синтеза однонитевой мРН К комплементарно одной смысловой цепи ДНК, то есть перенос генетической информации о нуклеотидном строении ДНК на мРНК. Через норы ядерной мембраны мРНК поступает в каналы эндоплазматической сети и здесь соединяется с рибосомами. Синтез белка происходит на молекуле мРНК, причем рибосомы продвигаются вдоль нее и к концу синтеза полипептидной цепи сходят с нее (рис. 4.6).


На рисунке 4.6 показаны только два триплета: антикодон комплементарный, соответствующий колону мРНК, и триплет ЦЦА, к которому присоединяется аминокислот (ЛК).
Аминокислоты, находящиеся в цитоплазме, активируются ферментами, после чего связываются с другим видом РНК - транспортной. Она перекосит аминокислоты к рибосомам. Различные тРНК доставляют к: рибосоме аминокислоты и располагают их соответственно последовательности триплетов мРНК. Три последовательных нуклеотида, кодирующие определенную аминокислоту, были названы кодоном (мРНК), а неразрывный триплет - антикодоном (тРНК). Кодоны ничем не отделены друг от друга. Доставляя определенную аминокислоту, тРНК взаимодействует с мРНК (кодон-антикодон). и аминокислота присоединяется к растущей пол и пептидной цепи. Совершенно очевидно, что синтез полипептида, то есть расположения в нем аминокислот, определяется последовательностью нуклеотидов мРНК.


Второй этап биосинтеза - трансляция - перевод генетической информации с мРНК в последовательность аминокислот полипептидной цепи.
В последовательности расположения нуклеотидов в триплете закодирована определенная аминокислота. Установлено, что генетический код является триплетным, то есть каждая аминокислота кодируется сочетанием из трех нуклеотидов. Если код триплетом, то из четырех азотистых оснований можно составить 64 кодона (4в3); этого с избытком хватает для кодирования 20 аминокислот. Выявлено новое свойство генетического кода - его избыточность, то есть некоторые аминокислоты кодируют не один, а большее число триплетов. Из 64 кодонов три признаны стопкодонами, они обусловливают прекращение (терминацию) или перерыв генетической трансляции (табл. 4.2).

Генетический код неперекрывающийся. Если бы кодоны перекрывались, то замена одной пары оснований должна была привести к замене двух аминокислот в полипептидной цепи, а этого не происходит. Кроме этого, он универсален - одинаков для биосинтеза белков живых существ. Универсальность кода свидетельствует о единстве жизни на Земле. Таким образом, генетический код - это система записи наследственной информации в нуклеиновых кислотах в виде последовательности нуклеотидов.
Впоследствии путь реализации генетической информации в клетке был дополнен обратной транскрипцией (синтез ДНК на матрице РНК) - репликацией ДНК и РНК (рис. 4.7).


Ген - участок ДНК. кодирующий первичную структуру полипептида или нуклеиновую кислоту. В контроле синтеза полинептидной цепи принимают участие несколько разных генов: структурные гены, ген-peгулятор, ген-оператор. Механизм регуляции генетического кода был открыт французскими учеными Ф. Жакобом и Ж. Моно в 1961 г. на бактериях E. coli и получил название механизма индукции-репрессии. Структурные гены кодируют последовательность аминокислот в полипептидах. Обычно для структурных генов существует общая система регуляции, состоящая из гена-регулятора и гена-оператора. Ген-регулятор обусловливает синтез белка-репрессора, который, соединяясь с оператором, «разрешает» или «запрещает» считывание информации соответствующих структурных генов. Ген-оператор и следующие за мим структурные гены были названы опероном - единицей считывания генетической информации, единицей транскрипции (рис. 4.8).

Например, для нормальной жизнедеятельности E. coli необходим молочный сахар - лактоза. У нее имеется лактозный участок (lас-оперон), на котором расположены три структурных гена для расщепления лактозы. Если лактоза не поступает в клетку, то белок-репрессор, вырабатываемый геном-регулятором, связывается с оператором и тем самым «запрещает» транскрипцию (синтез мРНК) со всего оперона. Если же лактоза поступает в клетку, то функция белка-репрессора блокируется, начинаются транскрипция, трансляция, синтез белков-ферментов и растепление лактозы. После расщепления всей лактозы восстанавливается активность белка-репрессора и транскрипция подавляется.
Таким образом, гены могут находиться во включенном и отключенном состоянии. На их регуляцию влияют продукты метаболизма, гормоны. Ген функционирует в системе ДНК-РНК-белок, на которую влияет взаимодействие генов и факторы внешней среды.

Биосинтез белка и генетический код

Определение 1

Биосинтез белка – ферментативный процесс синтеза белков в клетке. В нём участвуют три структурные элемента клетки – ядро, цитоплазма, рибосомы.

В ядре клетки в молекулах ДНК сохраняется информация о всех белках, которые в ней синтезируются, зашифрованная с помощью четырёхбуквенного кода.

Определение 2

Генетический код – это последовательность расположения нуклеотидов в молекуле ДНК, которая определяет последовательность аминокислот в молекуле белка.

Свойства генетического кода таковы:

    Генетический код триплетный, то есть каждой аминокислоте соответствует свой кодовый триплет (кодон ), состоящий из трёх расположенных рядом нуклеотидов.

    Пример 1

    Аминокислота цистеин кодируется триплетом А-Ц-А, валин – триплетом Ц-А-А.

    Код не перекрывается, то есть нуклеотид не может входить в состав двух соседних триплетов.

    Код вырожден, то есть одна аминокислота может кодироваться несколькими триплетами.

    Пример 2

    Аминокислота тирозин кодируется двумя триплетами.

    Код не имеет запятых (разделительных знаков), считывание информации происходит тройками нуклеотидов.

    Определение 3

    Ген – участок молекулы ДНК, который характеризуется определённой последовательностью нуклеотидов и определяет синтез одногой полипептидной цепи.

    Код является универсальным, то есть единым для всех живых организмов – от бактерий до человека. У всех организмов есть одни и те же 20 аминокислот, которые кодируются одними и теми же триплетами.

Этапы биосинтеза белка: транскрипция и трансляция

Структура любой белковой молекулы закодирована в ДНК, которая не участвует непосредственно в её синтезе. Она служит лишь матрицей для синтеза РНК.

Процесс биосинтеза белка происходит на рибосомах, которые расположены преимущественно в цитоплазме. Значит, для осуществления передачи к месту синтеза белка генетической информации из ДНК нужен посредник. Эту функцию выполняет иРНК.

Определение 4

Процесс синтеза молекулы иРНК на одной цепи молекулы ДНК на основании принципа комплементарности называется транскрипцией , или переписыванием.

Транскрипция происходит в ядре клетки.

Процесс транскрипции осуществляется одновременно не на всей молекуле ДНК, а лишь на её небольшом участке, который отвечает определённому гену. При этом происходит раскручивание части двойной спирали ДНК и короткий участок одной из цепей оголяется – теперь он будет выполнять роль матрицы для синтеза иРНК.

Потом вдоль этой цепи двигается фермент РНК-полимераза, соединяющий нуклеотиды в цепь иРНК, которая удлиняется.

Замечание 2

Транскрипция может одновременно происходить и на нескольких генах одной хромосомы и на генах разных хромосомах.

Образованная в результате иРНК содержит последовательность нуклеотидов, которая является точной копией последовательности нуклеотидов на матрице.

Замечание 3

Если в молекуле ДНК есть азотистое основание цитозин, то в иРНК – гуанин и наоборот. Комплементарной парой в ДНК является аденин – тимин, а РНК вместо тимина содержит урацил.

На специальных генах синтезируются и два другие типа РНК – тРНК и рРНК.

Начало и окончание синтеза всех типов РНК на матрице ДНК строго фиксированы специальными триплетами, которые контролируют запуск (инициирующие) и остановку (терминальные) синтеза. Они выполняют функции «разделительных знаков» между генами.

Соединение тРНК с аминокислотами происходит в цитоплазме. Молекула тРНК формой напоминает листик клевера, на его верхушке расположен антикодон – триплет нуклеотидов, который кодирует аминокислоту, которую переносит данная тРНК.

Сколько видов аминокислот, столько существует и тРНК.

Замечание 4

Поскольку много аминокислот могут кодироваться несколькими триплетами, то количество тРНК больше 20 (известно около 60 тРНК).

Соединение тРНК с аминокислотами происходит с участием ферментов. Молекулы тРНК транспортируют аминокислоты к рибосомам.

Определение 5

Трансляция – это процесс, в результате которого информация о структуре белка, записанная в иРНК в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в молекуле белка, которая синтезируется.

Этот процесс осуществляется в рибосомах.

Сначала иРНК присоединяется к рибосоме. На иРНК «нанизывается» первая рибосома, которая синтезирует белок. По мере продвижения рибосомы на конец иРНК, который освободился, «нанизывается» новая рибосома. На одной иРНК могут находиться одновременно более 80 рибосом, которые синтезируют один и тот же белок. Такая группа рибосом, соединённых с одной иРНК, называется полирибосомой , или полисомой . Вид белка, который синтезируется, определяется не рибосомой, а информацией, записанной на иРНК. Одна и та же рибосома способна синтезировать разные белки. После завершения синтеза белка рибосома отделяется от иРНК, а белок поступает в эндоплазматическую сеть.

Каждая рибосома состоит из двух субъединиц – малой и большой. Молекула иРНК присоединяется к малой субъединице. В месте контакта рибосомы и иРН находятся 6 нуклеотидов (2 триплета). К одному из них всё время подходят из цитоплазмы тРНК с разными аминокислотами и касаются антикодоном кодона иРНК. Если триплеты кодона и антикодона оказываются комплементарными, между аминокислотой уже синтезированной части белка и аминокислотой, которая доставляется тРНК, возникает пептидная связь. Соединение аминокислот в молекулу белка осуществляется с участием фермента синтетазы. Молекула тРНК отдаёт аминокислоту и переходит в цитоплазму, а рибосома передвигается на один триплет нуклеотидов. Так последовательно синтезируется полипептидная цепь. Продолжается всё это до тех пор, пока рибосома не дойдёт к одному из трёх терминирующих кодонов: УАА, УАГ или УГА. После этого синтез белка прекращается.

Замечание 5

Таким образом, последовательность кодонов иРНК определяет последовательность включения аминокислот в цепь белка. Синтезированные белки поступают в каналы эндоплазматического ретикулюма. Одна молекула белка в клетке синтезируется за 1 - 2 минуты.

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном . Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т-Т-Т соответствует аминокислоте лизину, отрезок А-Ц-А - цистину, Ц-А-А - валину н т. д. Разных аминокислот - 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка - сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК.

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

  1. Первый этап - синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» - переписывание).
  2. На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов - антикодон ов, с помощью которых определяется свой триплет-кодон.
  3. Третий этап - это процесс непосредственного синтеза полипептидных связей, называемый трансляцией . Он происходит в рибосомах.
  4. На четвертом этапе происходит образование вторичной и третичной структуры белка, то есть формирование окончательной структуры белка .

Синтез информационной РНК (и-РНК) происходит в ядре. Он осуществляется по одной из нитей ДНК с помощью ферментов и с учетом принципа комплиментарности азотистых оснований. Процесс переписывания информации, содержащейся в генах ДНК на синтезируемую молекулу и-РНК называется транскрипцией . Очевидно, что информация переписывается в виде последовательности нуклеотидов РНК. Нить ДНК в этом случае выступает в качестве матрицы. В молекулу РНК в процессе ее образования вместо азотистого основания – тимина включается урация.

Г - Ц - А - А - Ц - Т – фрагмент одной из цепочек молекулы ДНК- Ц - Г - У - У - Г - А – фрагмент молекулы информационной РНК.

Молекулы РНК индивидуальны, каждая из них несет информацию об одном гене. Далее молекулы и-РНК выходят из ядра клетки через поры оболочки ядра и направляются в цитоплазму к рибосомам. Сюда же с помощью транспортных РНК (т-РНК) доставляются аминокислоты. Молекула т-РНК состоит из 70–80 нуклеотидов. Общий вид молекулы напоминает лист клевера.

На «верхушке» листа расположен антикодон (кодовый триплет нуклеотидов), который соответствует определенной аминокислоте. Следовательно, для каждой аминокислоты существует своя, конкретная т-РНК. Процесс сборки молекулы белка идет в рибосомах и называется трансляцией . На одной молекуле и-РНК последовательно располагаются несколько рибосом. В функциональном центре каждой рибосомы способны поместиться два триплета и-РНК. Кодовый триплет нуклеотидов – молекулы т-РНК, подошедшей к месту синтеза белка, соответствует триплету нуклеотидов и-РНК, находящемуся в данный момент в функциональном центре рибосомы. Тогда рибосома по цепочке и-РНК делает шаг, равный трем нуклеотидам. Аминокислота отделяется от т-РНК и становится в цепочку мономеров белка. Освободившаяся т-РНК уходит в сторону и через некоторое время может снова соединиться с определенной кислотой, которую будет транспортировать к месту синтеза белка . Таким образом, последовательность нуклеотидов в триплете ДНК соответствует последовательности нуклеотидов в триплете и-РНК.

В сложнейшем процессе биосинтеза белка реализуются функции многих веществ и органоидов клетки.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Образование

Где происходит синтез белка? Суть процесса и место синтеза белков в клетке

2 июня 2015

Процесс белкового биосинтеза чрезвычайно важен для клетки. Поскольку белки являются сложными веществами, которые играют основную роль в тканях, они незаменимы. По этой причине в клетке реализована целая цепь процессов белкового биосинтеза, которая протекает в нескольких органеллах. Это гарантирует клетке воспроизведение и возможность существования.

Сущность процесса биосинтеза белка

Единственное место синтеза белков - это шероховатая эндоплазматическая сеть. Здесь располагается основная масса рибосом, которые ответственны за образование полипептидной цепочки. Однако до того как начнется этап трансляции (процесс синтеза белка), требуется активация гена, в котором хранится информация о белковой структуре. После этого требуется копирование данного участка ДНК (или РНК, если рассматривается бактериальный биосинтез).

После копирования ДНК требуется процесс создания информационной РНК. На ее основании будет выполняться синтез белковой цепочки. Причем все этапы, которые протекают с вовлечением нуклеиновых кислот, должны происходить в ядре клетки. Однако это не место, где происходит синтез белка. Это локация, где осуществляется подготовка к биосинтезу.

Рибосомальный биосинтез белка

Основное место, где происходит синтез белка, - это рибосома, клеточная органелла, состоящая из двух субъединиц. Таких структур в клетке огромное количество, и они в основном расположены на мембранах шероховатой эндоплазматической сети. Сам биосинтез происходит так: образованная в ядре клетки информационная РНК выходит сквозь нуклеарные поры в цитоплазму и встречается с рибосомой. Затем иРНК проталкивается в промежуток между субъединицами рибосомы, после чего происходит фиксация первой аминокислоты.

К месту, где происходит синтез белка, аминокислоты подаются при помощи транспортной РНК. Одна такая молекула может однократно приносить по одной аминокислоте. Они присоединяются по очереди в зависимости от последовательности кодонов информационной РНК. Также синтез может прекращаться на некоторое время.

При продвижении по иРНК рибосома может попадать на участки (интроны), которые не кодируют аминокислоты. В этих местах рибосома просто продвигается по иРНК, но присоединения аминокислот к цепочке не происходит. Как только рибосома достигает экзона, то есть участка, который кодирует кислоту, тогда она снова присоединяется к полипептиду.

Видео по теме

Постсинтетическая модификация белков

После достижения рибосомой стоп-кодона информационной РНК процесс непосредственного синтеза завершается. Однако полученная молекула имеет первичную структуру и пока не может выполнять зарезервированных для нее функций. Для того чтобы полноценно функционировать, молекула должна организоваться в определенную структуру: вторичную, третичную или еще более сложную - четвертичную.

Структурная организация белка

Вторичная структура - первая стадия структурной организации. Для ее достижения первичная полипептидная цепочка должна спирализоваться (образовать альфа-спирали) или загибаться (создать бета-слои). Затем, для того чтобы занимать еще меньше места по длине, молекула еще больше стягивается и сматывается в клубок за счет водородных, ковалентных и ионных связей, а также межатомных взаимодействий. Таким образом, получается глобулярная структура белка.

Четвертичная белковая структура

Четвертичная структура самая сложная из всех. Она состоит из нескольких участков с глобулярным строением, соединенных фибриллярными нитями полипептида. Вдобавок третичная и четвертичная структура могут содержать углеводный или липидный остаток, что расширяет спектр функций белка. В частности, гликопротеиды, комплексные соединения белка и углевода, являются иммуноглобулинами и выполняют защитную функцию. Также гликопротеиды располагаются на мембранах клеток и работают рецепторами. Однако модифицируется молекула не там, где происходит синтез белка, а в гладкой эндоплазматической сети. Здесь существует возможность присоединения липидов, металлов и углеводов к доменам белков.

Источник: fb.ru

Актуально

Лучшие статьи по теме