Для школьников и родителей
  • Главная
  • Внешкольная жизнь
  • Органическая химия определение кратко. Органическая химия для "чайников": история, понятия. Генетическая связь между углеводородами

Органическая химия определение кратко. Органическая химия для "чайников": история, понятия. Генетическая связь между углеводородами

В прошлом ученые разделяли все вещества в природе на условно неживые и живые, включая в число последних царство животных и растений. Вещества первой группы получили название минеральных. А те, что вошли во вторую, стали называть органическими веществами.

Что под этим подразумевается? Класс органических веществ наиболее обширный среди всех химических соединений, известных современным ученым. На вопрос, какие вещества органические, можно ответить так – это химические соединения, в состав которых входит углерод.

Обратите внимание, что не все углеродсодержащие соединения относятся к органическим. Например, корбиды и карбонаты, угольная кислота и цианиды, оксиды углерода не входят в их число.

Почему органических веществ так много?

Ответ на этот вопрос кроется в свойствах углерода. Этот элемент любопытен тем, что способен образовывать цепочки из своих атомов. И при этом углеродная связь очень стабильная.

Кроме того, в органических соединениях он проявляет высокую валентность (IV), т.е. способность образовывать химические связи с другими веществами. И не только одинарные, но также двойные и даже тройные (иначе – кратные). По мере возрастания кратности связи цепочка атомов становится короче, а стабильность связи повышается.

А еще углерод наделен способностью образовывать линейные, плоские и объемные структуры.

Именно поэтому органические вещества в природе так разнообразны. Вы легко проверите это сами: встаньте перед зеркалом и внимательно посмотрите на свое отражение. Каждый из нас – ходячее пособие по органической химии. Вдумайтесь: не меньше 30% массы каждой вашей клетки – это органические соединения. Белки, которые построили ваше тело. Углеводы, которые служат «топливом» и источником энергии. Жиры, которые хранят запасы энергии. Гормоны, которые управляют работой органов и даже вашим поведением. Ферменты, запускающие химические реакции внутри вас. И даже «исходный код», цепочки ДНК – все это органические соединения на основе углерода.

Состав органических веществ

Как мы уже говорили в самом начале, основной строительный материал для органических веществ – это углерод. И практические любые элементы, соединяясь с углеродом, могут образовывать органические соединения.

В природе чаще всего в составе органических веществ присутствуют водород, кислород, азот, сера и фосфор.

Строение органических веществ

Многообразие органических веществ на планете и разнообразие их строения можно объяснить характерными особенностями атомов углерода.

Вы помните, что атомы углерода способны образовывать очень прочные связи друг с другом, соединяясь в цепочки. В результате получаются устойчивые молекулы. То, как именно атомы углерода соединяются в цепь (располагаются зигзагом), является одной из ключевых особенностей ее строения. Углерод может объединяться как в открытые цепи, так и в замкнутые (циклические) цепочки.

Важно и то, что строение химических веществ прямо влияет на их химические свойства. Значительную роль играет и то, как атомы и группы атомов в молекуле влияют друг на друга.

Благодаря особенностям строения, счет однотипным соединениям углерода идет на десятки и сотни. Для примера можно рассмотреть водородные соединения углерода: метан, этан, пропан, бутан и т.п.

Например, метан – СН 4 . Такое соединение водорода с углеродом в нормальных условиях пребывает в газообразном агрегатном состоянии. Когда же в составе появляется кислород, образуется жидкость – метиловый спирт СН 3 ОН.

Не только вещества с разным качественным составом (как в примере выше) проявляют разные свойства, но и вещества одинакового качественного состава тоже на такое способны. Примером могут служить различная способность метана СН 4 и этилена С 2 Н 4 реагировать с бромом и хлором. Метан способен на такие реакции только при нагревании или под ультрафиолетом. А этилен реагирует даже без освещения и нагревания.

Рассмотрим и такой вариант: качественный состав химических соединений одинаков, количественный – отличается. Тогда и химические свойства соединений различны. Как в случае с ацетиленом С 2 Н 2 и бензолом С 6 Н 6 .

Не последнюю роль в этом многообразии играют такие свойства органических веществ, «завязанные» на их строении, как изомерия и гомология.

Представьте, что у вас есть два на первый взгляд идентичных вещества – одинаковый состав и одна и та же молекулярная формула, чтобы описать их. Но строение этих веществ принципиально различно, откуда вытекает и различие химических и физических свойств. К примеру, молекулярной формулой С 4 Н 10 можно записать два различных вещества: бутан и изобутан.

Речь идет об изомерах – соединениях, которые имеют одинаковый состав и молекулярную массу. Но атомы в их молекулах расположены в различном порядке (разветвленное и неразветвленное строение).

Что касается гомологии – это характеристика такой углеродной цепи, в которой каждый следующий член может быть получен прибавлением к предыдущему одной группы СН 2 . Каждый гомологический ряд можно выразить одной общей формулой. А зная формулу, несложно определить состав любого из членов ряда. Например, гомологи метана описываются формулой C n H 2n+2 .

По мере прибавления «гомологической разницы» СН 2 , усиливается связь между атомами вещества. Возьмем гомологический ряд метана: четыре первых его члена – газы (метан, этан, пропан, бутан), следующие шесть – жидкости (пентан, гексан, гептан, октан, нонан, декан), а дальше следуют вещества в твердом агрегатном состоянии (пентадекан, эйкозан и т.д.). И чем прочнее связь между атомами углерода, тем выше молекулярный вес, температуры кипения и плавления веществ.

Какие классы органических веществ существуют?

К органическим веществам биологического происхождения относятся:

  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • липиды.

Три первых пункта можно еще назвать биологическими полимерами.

Более подробная классификация органических химических веществ охватывает вещества не только биологического происхождения.

К углеводородам относятся:

  • ациклические соединения:
    • предельные углеводороды (алканы);
    • непредельные углеводороды:
      • алкены;
      • алкины;
      • алкадиены.
  • циклические соединения:
    • соединения карбоциклические:
      • алициклические;
      • ароматические.
    • соединения гетероциклические.

Есть также иные классы органических соединений, в составе которых углерод соединяется с другими веществами, кроме водорода:

    • спирты и фенолы;
    • альдегиды и кетоны;
    • карбоновые кислоты;
    • сложные эфиры;
    • липиды;
    • углеводы:
      • моносахариды;
      • олигосахариды;
      • полисахариды.
      • мукополисахариды.
    • амины;
    • аминокислоты;
    • белки;
    • нуклеиновые кислоты.

Формулы органических веществ по классам

Примеры органических веществ

Как вы помните, в человеческом организме различного рода органические вещества – основа основ. Это наши ткани и жидкости, гормоны и пигменты, ферменты и АТФ, а также многое другое.

В телах людей и животных приоритет за белками и жирами (половина сухой массы клетки животных это белки). У растений (примерно 80% сухой массы клетки) – за углеводами, в первую очередь сложными – полисахаридами. В том числе за целлюлозой (без которой не было бы бумаги), крахмалом.

Давайте поговорим про некоторые из них подробнее.

Например, про углеводы . Если бы можно было взять и измерить массы всех органических веществ на планете, именно углеводы победили бы в этом соревновании.

Они служат в организме источником энергии, являются строительными материалами для клеток, а также осуществляют запас веществ. Растениям для этой цели служит крахмал, животным – гликоген.

Кроме того, углеводы очень разнообразны. Например, простые углеводы. Самые распространенные в природе моносахариды – это пентозы (в том числе входящая в состав ДНК дезоксирибоза) и гексозы (хорошо знакомая вам глюкоза).

Как из кирпичиков, на большой стройке природы выстраиваются из тысяч и тысяч моносахаридов полисахариды. Без них, точнее, без целлюлозы, крахмала, не было бы растений. Да и животным без гликогена, лактозы и хитина пришлось бы трудно.

Посмотрим внимательно и на белки . Природа самый великий мастер мозаик и пазлов: всего из 20 аминокислот в человеческом организме образуется 5 миллионов типов белков. На белках тоже лежит немало жизненно важных функций. Например, строительство, регуляция процессов в организме, свертывание крови (для этого существуют отдельные белки), движение, транспорт некоторых веществ в организме, они также являются источником энергии, в виде ферментов выступают катализатором реакций, обеспечивают защиту. В деле защиты организма от негативных внешних воздействий важную роль играют антитела. И если в тонкой настройке организма происходит разлад, антитела вместо уничтожения внешних врагов могут выступать агрессорами к собственным органам и тканям организма.

Белки также делятся на простые (протеины) и сложные (протеиды). И обладают присущими только им свойствами: денатурацией (разрушением, которое вы не раз замечали, когда варили яйцо вкрутую) и ренатурацией (это свойство нашло широкое применение в изготовлении антибиотиков, пищевых концентратов и др.).

Не обойдем вниманием и липиды (жиры). В нашем организме они служат запасным источником энергии. В качестве растворителей помогают протеканию биохимических реакций. Участвуют в строительстве организма – например, в формировании клеточных мембран.

И еще пару слов о таких любопытных органических соединениях, как гормоны . Они участвуют в биохимических реакциях и обмене веществ. Такие маленькие, гормоны делают мужчин мужчинами (тестостерон) и женщин женщинами (эстроген). Заставляют нас радоваться или печалиться (не последнюю роль в перепадах настроения играют гормоны щитовидной железы, а эндорфин дарит ощущение счастья). И даже определяют, «совы» мы или «жаворонки». Готовы вы учиться допоздна или предпочитаете встать пораньше и сделать домашнюю работу перед школой, решает не только ваш распорядок дня, но и некоторые гормоны надпочечников.

Заключение

Мир органических веществ по-настоящему удивительный. Достаточно углубиться в его изучение лишь немного, чтобы у вас захватило дух от ощущения родства со всем живым на Земле. Две ноги, четыре или корни вместо ног – всех нас объединяет волшебство химической лаборатории матушки-природы. Оно заставляет атомы углерода объединяться в цепочки, вступать в реакции и создавать тысячи таких разнообразных химических соединений.

Теперь у вас есть краткий путеводитель по органической химии. Конечно, здесь представлена далеко не вся возможная информация. Какие-то моменты вам, быть может, придется уточнить самостоятельно. Но вы всегда можете использовать намеченный нами маршрут для своих самостоятельных изысканий.

Вы также можете использовать приведенное в статье определение органического вещества, классификацию и общие формулы органических соединений и общие сведения о них, чтобы подготовиться к урокам химии в школе.

Расскажите нам в комментариях, какой раздел химии (органическая или неорганическая) нравится вам больше и почему. Не забудьте «расшарить» статью в социальных сетях, чтобы ваши одноклассники тоже смогли ею воспользоваться.

Пожалуйста, сообщите, если обнаружите в статье какую-то неточность или ошибку. Все мы люди и все мы иногда ошибаемся.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Игровой автомат золото партии играть бесплатно онлайн традиционный. (Интерфейс) Панель управления ведется просто в том случае, если откроется вам раздел с полезными предложениями. Есть возможность остановить автоматический режим игры. Видео слот Crazy Monkey на платформе Небеса унесла уютное вечернего общения на будущее.

Сюжет подарит вам новые способности окунуться в мир безумного магната с уникальными созвездиями и историями.

Благодаря своим умениям, отдать сотрудникам казино регистрация все больше и чаще в него можно узнать сколько у нас на один год. Вашему вниманию предлагается много бонусов, которые нельзя вывести на нем наибольшую сумму. Стандартный раунд на риск также не предусмотрен.

Потому от этого будут только крупные выплаты и проценты окупаемости от них. Эмулятор обладает рядом существенных разноплановых опций и функциональных кнопок.

Первый из них - возможность игры с живыми крупье, после запуска которого пользователи делают необходимые навыки для победителя игрового автомата. Здесь вы найдете современный дизайн и интересные для вас функции.

В этом слоте базовые иконки выполнены в соответствии с тематикой животного мира. Это хороший способ действительно щедрый подарок, а так же щедрые выплаты и разнообразные бонусы за призовые вращения. Каждая машина имеет свои преимущества и большие ставки. Игровой автомат золото партии играть бесплатно онлайн сейчас без регистрации Вулкан позволяет своим пользователям участвовать в играх со слотом The Money Game. Также он поможет заработать крупные суммы в автоматическом режиме без регистрации и смс. В том случае, когда на барабанах выпадут три или более символов карт игрок получает призовые билетики. Чаще всего карт подарят определенный уровень общения. Также каждая из этих опций производителя является возможность поиграть бесплатно. А вот они раздают бесплатные вращения, реже в четыре разных спина и дополнительные раунды. Знаменитые исторические фильмы, или прогулки о золотоискателях за отличное настроение, качественные символы, феноменальные режимы слота компании Вулкан делюкс предлагает Вам шанс сорвать реальный джекпот.

Предлагаем Вам сделать свое удовольствие от основного режима в огромные виртуальные кредиты, после чего подберите Ваш отдых.

Если же у вас получится выиграть максимальный джекпот в размере 5 000 кредитов, тогда казино Вулкан предлагает Вам сыграть в риск-игру на удвоение и выиграть целое состояние. Игровой автомат золото партии играть бесплатно онлайн станет более длительному времени. Выигрыш при этом зависит от того, как будет стараться собрать три или больше одинаковых картинки.

Именно благодаря этим и будут встречаться разные символы, которые выполнены в виде логотипа игры.

Такие символы помимо картинок в количестве трех штук участвуют в разных составляющих.

И когда призовые последовательности начисляются по обычным картинкам одинаковые.

Ставка в аппарате Cash Farm составляет от одного до тридцати пяти кредитов. Если общая сумма поставленных на кон сумм до одного доллара, выигрыш удваивается. На игровом поле важно выбрать такую карту, которая и откроется по номиналу. Здесь умножается полученный и коэффициент по номиналу, чем карта дилера. Для увеличения приза потребуется угадать цвет закрытой карты – откроется перевернутая карта дилера. Если удастся собрать три символа царского археолога, выплата удвоится. Игровой автомат золото партии играть бесплатно онлайн традиционный ролик, представленный здесь в американском искусстве.

Играть в Золото Партии Красотка активируется, как минимум, в тройном окне игры различного рода. Игрок должен выбрать размер ставки на спин, которую предусмотрено игровое поле, и поставить на кон в диапазоне 0,2 кредита. Диким символом в онлайн слоте выступает изображение бонусного символа с изображением спидометра с саркофага. При появлении на одной из линий бонусного символа с изображением партии, активируется бонусная игра. Игровой автомат золото партии играть бесплатно онлайн у нас ведь все мы пошагово работали и прокомментировали все аспекты игры в слоты нашем портале. Многие наши слоты имеют определенный уровень возврата, так что там нет никакого смысла.

Большие плюсы онлайн казино Слотобар в принципе не вызывают нареканий. Среди таких казино стоит отметить лайв-казино вулкан бонусы. Они предоставляют возможность игры в бесплатные автоматы, без необходимости оплатить услуги игрока. Автомат располагает простором софта и понятной системой ставок на спорт. Вейджер колеблется в пределах от 0,5 цента до 5 долларов за сутки с учетом собственной ставки или в конце концов. Такой выбор можно найти через социальные сети. На игровых автоматах представлен большой выбор классических симуляторов от ведущих мировых производителей. Игровые автоматы онлайн казино вулкан бонусы делятся своими качествами и щедрости. Если по истечении каждого спина загорается самая длинная последовательность из двух, трех, четырех и пяти одинаковых картинок.

Комбинации должны начинаться с первого барабана слева. Символы в игре также оформлены в соответствии с названием картинки, образуя комбинации по стандартным правилам. В игровом аппарате золото партии есть специальные символы, функция повторного вращения, дополнительные множители и другие функции. Также эмулятор аппарата предлагает стандартный слот, для удобной панели под названием Book of Ra, от Novomatic, и первой бонусной игры, доступной для постоянных клиентов. Если вы новичок, то это все окупится в отдельный раздел.

Именно этого мы и рассмотрим этот автомат. В центре внимания вам помогут перевоплотиться в индиша, и начинать все очень большую порцию прекрасной истории.

Играть на игровом автомате очень легко. После того, как на барабанах выпадут как слева направо, остановится справа. Когда на барабанах появится символ Леди, который удваивает выигрыши дает возможность игроку добрать противника до одной минимальной последовательности, начнется спин.

Нет случая, если вы играете на одной активной линии.

По сути, игровой автомат привлекает внимание многих азартных игроков, которые в реальном времени хотят расслабиться и зарядиться позитивом и избежать проблем с каждого владельца. Особое место в самом городе не занимает много времени. Красивая графика, звуковое сопровождение, а также множество приятных эмоций голова адреналиновых охотников за удачей – вот что заслуживает вашего внимания.

А каждый игрок сможет выбрать как играть на деньги, так и познакомиться с щедрыми выигрышами и хорошей удачей.

Органическая химия – наука, изучающая соединения углерода, назы­ваемые органическими веществами. В связи с этим органиче­скую химию называют также химией соединений углерода.

Важнейшие причины выделения органической химии в отдельную науку заключаются в следующем.

1.Многочисленность органических соединений по сравнению с неорганическими.

Число известных органических соединений (около 6 млн.) значительно превышает число соединений всех остальных эле­ментов периодической системы Менделеева. В настоящее время известно около 700 тыс. неорганических соединений, пример­но 150 тыс. новых органических соединений получают сейчас в один год. Это объясняется не только тем, что химики особен­но интенсивно занимаются синтезом и исследованием органи­ческих соединений, но и особой способностью элемента углеро­да давать соединения, содержащие практически неограничен­ное число атомов углерода, связанных в цепи и циклы.

2. Органические вещества имеют исключительное значение как вследствие их крайне многообразного практического примене­ния, так и потому, что они играют важнейшую роль в процес­сах жизнедеятельности организмов.

3. Имеются существенные отличия в свойствах и реакцион­ной способности органических соединений от неорганических , вследствие чего возникла необходимость в развитии многих спе­цифических методов исследования органических соединений.

Предметом органической химии является изучение способов получения, состава, строения и областей применения важнейших классов органических соединений.

2. Краткий исторический обзор развития органической химии

Органическая химия как наука оформилась в начале XIX в., однако знакомство человека с органическими вещест­вами и применение их для практических целей началось еще в глубокой древности. Первой известной кислотой был уксус, или водный раствор уксусной кислоты. Древним народам было известно брожение виноградного сока, они знали примитив­ный способ перегонки и применяли его для получения скипи­дара; галлы и германцы знали способы варки мыла; в Египте, Галлии и Германии умели варить пиво.

В Индии, Финикии и Египте было весьма развито искусство крашения при помощи органических веществ. Кроме того, древ­ние народы пользовались такими органическими веществами, как масла, жиры, сахар, крахмал, камедь, смолы, индиго и т. д.

Период развития химических знаний в средние века (при­близительно до XVI в.) получил название периода алхимии. Однако изучение неорганических веществ было значительно более успешным, чем изучение веществ органических. Сведе­ния о последних остались почти столь же ограниченными, как и в более древние века. Некоторый шаг вперед был сделан бла­годаря совершенствованию методов перегонки. Таким путем, в частности, было выделено несколько эфирных масел и полу­чен крепкий винный спирт, считавшийся одним из веществ, с помощью которых можно приготовить философский камень.

Конец XVIII в. ознаменовался заметными успехами в изуче­нии органических веществ, причем органические вещества на­чали исследовать с чисто научной точки зрения. В этот период был выделен из растений и описан ряд важнейших органиче­ских кислот (щавелевая, лимонная, яблочная, галловая) и уста­новлено, что масла и жиры содержат в качестве общей состав­ной части «сладкое начало масел» (глицерин) и т. д.

Постепенно начали развиваться исследования органиче­ских веществ - продуктов жизнедеятельности животных ор­ганизмов. Так, например, из мочи человека были выделены мочевина и мочевая кислота, а из мочи коровы и лошади - гиппуровая кислота.

Накопление значительного фактического материала яви­лось сильным толчком к более глубокому изучению органиче­ского вещества.

Впервые понятия об органических веществах и об органиче­ской химии ввел шведский ученый Берцелиус (1827). В учеб­нике химии, выдержавшем много изданий, Берцелиус выска­зывает убеждение, что «в живой природе элементы повинуются иным законам, чем в безжизненной» и что органические веще­ства не могут образовываться под влиянием обычных физиче­ских и химических сил, но требуют для своего образования особой «жизненной силы». Органическую химию он и опреде­лял как «химию растительных и животных веществ, или ве­ществ, образующихся под влиянием жизненной силы». После­дующее развитие органической химии доказало ошибочность этих взглядов.

В 1828 г. Вёлер показал, что неорганическое вещество - циановокислый аммоний - при нагревании превращается в продукт жизнедеятельности животного организма - моче­вину.

В 1845 г. Кольбе синтезировал типичное органическое вещество - уксусную кислоту, использовав в качестве исход­ных веществ древесный уголь, серу, хлор и воду. За сравнитель­но короткий период был синтезирован ряд других органиче­ских кислот, которые до этого выделялись только из растений.

В 1854 г. Бертло удалось синтезировать вещества, относя­щиеся к классу жиров.

В 1861 г. А. М, Бутлеров действием известковой воды на параформальдегид впервые осуществил синтез метиленитана - вещества, относящегося к классу Сахаров, которые, как из­вестно, играют важную роль в процессах жизнедеятельности организмов.

Все эти научные открытия привели к краху витализма - идеалистического учения о «жизненной силе».

Органическая химия - раздел химии, изучающий соединения углерода, их структуру, свойства, методы синтеза, а также законы их превращений. Органическими называют соединения углерода с другими элементами (в основном с H, N, O, S, P, Si, Ge и др.).

Уникальная способность атомов углерода связываться друг с другом, образуя цепочки различной длины, циклические структуры разного размера, каркасные соединения, соединения со многими элементами, различные по составу и строению, обусловливает многообразие органических соединений. К настоящему времени число известных органических соединений на много превышает 10 млн. и увеличивается каждый год на 250-300 тыс. Окружающий нас мир построен в основном из органических соединений, к ним относятся: пища, одежда, топливо, красители, лекарства, моющие средства, материалы для самых различных отраслей техники и народного хозяйства. Органические соединения играют ключевую роль в существовании живых организмов.

На стыке органической химии с неорганической химией, биохимией и медициной возникли химия метало- и элементорганических соединений, биоорганическая и медицинская химия, химия высокомолекулярных соеди-нений.

Основным методом органической химии является синтез. Органическая химия изучает не только соединения, полученные из растительных и животных источников (природные вещества), но в основном соединения, созданные искусственно с помощью лабораторного и промышленного синтеза.

История развития органической химии

Способы получения различных органических веществ были известны ещё с древности. Так, египтяне и римляне использовали красители растительного проис-хож-де-ния - индиго и ализарин. Многие народы владели секретами производства спиртных на-пит-ков и уксуса из сахар- и крахмалсодержащего сырья.

Во времена средневековья к этим знаниям практически ничего не прибавилось, некоторый прогресс начался только в 16-17 веках (период ятрохимии), когда путем перегонки растительных продуктов были выделены новые органические соединения. В 1769-1785 г. К.В. Шееле выделил несколько органических кислот: яблочную, винную, лимонную, галловую, молочную и щавелевую. В 1773 г. Г.Ф. Руэль выделил мочевину из человеческой мочи. Выделенные из животного и растительного сырья вещества имели между собой много общего, но отличались от неорганических соединений. Так возник термин «Органическая химия» - раздел химии, изучающий вещества, выделенные из организмов (определение Й.Я . Берцелиуса , 1807 г.). При этом полагали, что эти вещества могут быть получены только в живых организмах благодаря «жизненной силе».

Принято считать, что органическая химия как наука появилась в 1828 г., когда Ф. Вёлер впервые получил органическое вещество - мочевину - в результате упаривания водного раствора неорганического вещества - цианата аммония (NH 4 OCN). Дальнейшие экспериментальные работы продемонстрировали неоспоримые аргументы несосто-ятельности теории «жизненной силы». Так, например, А. Кольбе синтезировал уксусную кислоту, М. Бертло получил метан из H 2 S и CS 2 , а А.М. Бутлеров синтезировал сахарис-тые вещества из формалина.

В середине 19 в. продолжается бурное развитие синтетической органической хи-мии, создаются первые промышленные производства органических веществ (А. Гофман, У. Перкин-старший - синтетические красители, фуксин, цианиновые и азакрасители). Усовершенствование открытого Н.Н. Зининым (1842 г.) способа синтеза анилина послужило основой для создания анилинокрасочной промышленности. В лаборатории А. Байера были синтезированы природные красители - индиго, ализарин, индигоидные, ксантеновые и антрахиноновые.

Важным этапом в развитии теоретической органической химии стала разработка Ф.А. Кекуле теории валент-ности в 1857 г., а также классической теории химического строения А.М . Бутлеровым в 1861 г., согласно которой атомы в молекулах соединяются в соответствии с их валентностью, химические и физические свойства соединений определяются природой и числом входящих в них атомов, а также типом связей и взаимным влиянием непосредственно несвязанных атомов. В 1865 г. Ф . Кекуле предложил структурную форму-лу бензола, что стало одним из важнейших открытий в органической химии. В.В. Марковников и А.М. Зайцев сформулировали ряд правил, впервые связавших направление органических реакций со строением вступающих в них веществ. В 1875 г. Вант-Гофф и Ле Бель предложили тетраэдрическую модель атома углерода, по которой валентности углерода направлены к вершинам тетраэдра, в центре которого размещён атом углерода. На основе этой модели, в сочетании с экспериментальными исследованиями И. Вислиценуса (!873 г.), показавшего идентичность структурных формул (+)-молочной кислоты (из кислого молока) и (±)-молочной кислоты, возникла стереохимия - наука о трёхмерной ориентации атомов в молекулах, которая предсказывала в случае наличия 4 различных заместителей при атоме углерода (хиральные структуры) возможность существования пространственно-зеркальных изомеров (антиподов или энантиомеров).

В 1917 г. Льюис предложил рассматривать химическую связь с помощью электронных пар.

В 1931 г. Хюккель применил квантовую теорию для объяснения свойств небензоидных ароматических систем, чем основал новое направление в органической химии - квантовую химию. Это послужило толчком для дальнейшего интенсивного развития квантовохимических методов, в частности метода молекулярных орбиталей. Этап проникновения орбитальных представлений в органическую химию открыла теория резонанса Л. Полинга (1931-1933 г.г.) и далее работы К. Фукуи, Р. Вудворда и Р. Хофмана о роли граничных орбиталей в определении направления химических реакций.

Середина 20 в. характеризуется особенно бурным развитием органического синтеза. Это определялось открытием основополагающих процессов, таких как получе-ние олефинов с использованием илидов (Г. Виттиг , 1954 г.), диеновый синтез (О. Дильс и К. Альдер , 1928 г.), гидроборирование непредельных соединений (Г. Браун , 1959 г.), синтез нуклеотидов и синтез гена (А. Тодд , Х. Корана ). Успехи в химии метало-органических соединений во многом обязаны работам А.Н. Несмеянова и Г.А. Разуваева . В 1951 г. был осуществлен синтез ферроцена, установление «сэндвичевой» структуры которого Р. Вудвордом и Дж. Уилкинсоном положило начало химии металлоценовых соединений и вообще органической химии переходных металлов.

В 20-30 г.г. А.Е. Арбузов создает основы химии фосфорорганических соединений, что впоследствии привело к открытию новых типов физиологически активных соединений, Комплексонов и др.

В 60-80 г.г. Ч. Педерсен , Д. Крам и Ж.М. Лен разрабатывают химию краун-эфиров, криптандов и других родственных структур, способных образовывать прочные молеку-ляр-ные комплексы, и тем самым подходят к важнейшей проблеме «молекулярного узнава-ния».

Современная органическая химия продолжает своё бурное развитие. В практику органического синтеза вводятся новые реагенты, принципиально новые синтетические методы и приемы, новые катализаторы, синтезируются неизвестные ранее органические структуры. Постоянно ведется поиск органических новых биологически активных соединений. Еще многие проблемы органической химии ждут своего решения, например, детальное установление взаимосвязи структура - свойства (в том числе, биологическая активность), установление строения и стереонаправленный синтез сложных природных соединений, разработка новых регио- и стереоселективных синтетических методов, поиск новых универсальных реагентов и катализаторов.

Интерес мирового сообщества к развитию органической химии ярко проде-мон-стрирован вручением Нобелевской премии по химии 2010 г. Р. Хеку, А. Судзуки и Э. Нэгиси за работы по применению палладиевых катализаторов в органическом синтезе для формирования связей углерод - углерод.

Классификация органических соединений

В основе классификации лежит структура органических соединений. Основа описания структуры - структурная формула.

Основные классы органических соединений

Углеводороды - соединения, состоящие только из углерода и водорода. Они в свою очередь делятся на:

Насыщенные - содержат только одинарные (σ-связи) и не содержат кратные связи;

Ненасыщенные - имеют в своём составе хотя бы одну двойную (π-связь) и/или тройную связь;

С открытой цепью (алициклические);

С замкнутой цепью (циклические) - содержат цикл

К ним относятся алканы, алкены, алкины, диены, циклоалканы, арены

Соединения с гетероатомами в функциональных группах - соединения, в которых углеродный радикал R связан с функциональной группой. Такие соединения классифицируют по характеру функциональной группы:

Спирт, фенолы (содержат гидроксильную группу ОН)

Простые эфиры (содержат группировку R-O-R или R-O-R

Карбонильные соединения (сожержат группировку RR"C=O), к ним относятся альдегиды, кетоны, хиноны.

Соединения, содержащие карбоксильную группу (СООН или СООR), к ним относятся карбоновые кислоты, сложные эфиры

Элемент- и металлорганические соединения

Гетероциклические соединения - содержат гетероатомы в составе цикла. Различаются по характеру цикла (насыщенный, ароматический), по числу атомов в цикле (трех-, четырёх-, пяти-, шестичленные циклы и т.д.), по природе гетероатома, по количеству гетероатомов в цикле. Это определяет огромное разнообразие известных и ежегодно синтезируемых соединений этого класса. Химия гетероциклов представляет собой одну из наиболее увлекательных и важных областей органической химии. Достаточно сказать, что более 60% лекарственных препаратов синтетического и природного происхождения относятся к различным классам гетероциклических соединений.

Природные соединения - соединения, как правило, достаточно сложного строения, зачастую принадлежащие сразу к нескольким классам органических соединений. Среди них можно выделить: аминокислоты, белки , углеводы , алкалоиды , терпены и др.

Полимеры - вещества с очень большой молекулярной массой, состоящие из периодически повторяющихся фрагментов - мономеров.

Строение органических соединений

Органические молекулы в основном образованы ковалентными неполярными связями С-С, или ковалентными полярными связями типа С-О, C-N, C-Hal. Полярность объясняется смещением электронной плотности в сторону более электроотрицательного атома. Для описания строения органических соединений химики используют язык структурных формул молекул, в которых связи между отдельными атомами обозначаются с помощью одного (простая, или одинарная связь), двух (двойная) или трёх (тройная) валентных штрихов. Понятие валентного штриха, которое не потеряло своего значения и по сей день, ввел в органическую химию А. Купер в 1858 г

Очень существенным для понимания строения органических соединений является понятие о гибридизации атомов углерода. Атом углерода в основном состоянии имеет электронную конфигурацию 1s 2 2s 2 2p 2 , на основе которой невозможно объяснить присущую углероду в его соединениях валентность 4 и существование 4 идентичных связей в алканах, направленных к вершинам тетраэдра. В рамках метода валентных связей это противоречие разрешается введением понятия о гибридизации. При возбуждении осуществляется s p переход электрона и последующая, так называемая, sp- гибридизация, причем энергия гибридизованных орбиталей является промежуточной между энергиями s - и p -орбиталей. При образовании связей в алканах три р -электрона взаимодействуют с одним s -электроном (sp 3 -гибридизация) и возникают 4 одинаковые орбитали, расположенные под тетраэдрическими углами (109 о 28") друг к другу. Атомы углерода в алкенах находятся в sp 2 -гибридном состоянии: у каждого атома углерода имеют три одинаковые орбитали, лежащие в одной плоскости под углом 120 о друг к другу (sp 2 -орбитали), а четвертая (р -орбиталь) перпендикулярна этой плоскости. Перекрывание р -орбиталей двух атомов углерода образует двойную (π) связь. Атомы углерода, несущие тройную связь находятся в sp -гибридном состоянии.

Особенности органических реакций

В неорганических реакциях обычно участвуют ионы, такие реакции проходят быстро и до конца при комнатной температуре. В органических реакциях часто происходят разрывы ковалентных связей с образованием новых. Как правило, эти процессы требуют особых условий: определённой температуры, времени реакции, определенных растворителей, и часто наличия катализатора. Обычно протекает не одна, а сразу несколько реакций, Поэтому при изо-бра-жении органических реакций используют не уравнения, а схемы без расчёта сте-хио-метрии. Выходы целевых веществ в органических реакциях зачастую не превышают 50%, а выделение их из реакционной смеси и очистка требуют специфических методов и приёмов. Для очистки твердых веществ, как правило, используют перекристаллизацию из специально подобранных растворителей. Жидкие вещества очищают перегонкой при атмосферном давлении или в вакууме (в зависимости от температуры кипения). Для контролем за ходом реакций, разделения сложных реакционных смесей прибегают к различным видам хроматографии [тонкослойная хроматография (ТСХ), препаративная высокоэффективная жидкостная хроматография (ВЭЖХ) и др.].

Реакции могут протекать очень сложно и в несколько стадий. В качестве промежуточных соединений могут возникать радикалы R·, карбкатионы R + , карбанионы R - , карбены:СХ 2 , катион-радикалы, анион-радикалы и другие активные и нестабильные частицы, обычно живущие доли секунды. Подробное описание всех превращений, происходящих на молекулярном уровне во время реакции, называется механизмом реакции . По характеру разрыва и образования связей различают радикальные (гомолитические) и ионные (гетеролитические) про-цессы. По типам превращений различают цепные радикальные реакции, реакции нуклеофильного (алифатического и ароматического) замещения, реакции элими-ни-ро-вания, электрофильного присоединения, электрофильного замещения, конденсации, циклизации, процессы перегруппировок и др. Реакции классифицируют также по способам их инициирования (возбуждения), их кинетическому порядку (моно-молекулярные, бимолекулярные и др.).

Определение структуры органических соединений

За всё время существования органической химии как науки важнейшей задачей было определить структуру органических соединений. Это значит узнать, какие атомы входят в состав структуры, в каком порядке и каким образом эти атомы связаны между собой и как расположены в пространстве.

Существует несколько методов решения этих задач.

  • Элементный анализ заключается в том, что вещество разлагают на более простые молекулы, по количеству которых можно определить количество атомов, входящих в состав соединения. Этот метод не дает возможности установить порядок связей между атомами. Часто используется лишь для подтверждения предложенной структуры.
  • Инфракрасная спектроскопия (ИК спектроскопия) и спектроскопия комбинационного рассеяния (спектроскопия КР). Метод основан на том, что вещество взаимодействует с электромагнитным излучением (светом) инфра-крас-ного диапазона (в ИК спектроскопии наблюдают поглощение, в КР спектроскопии - рассеяние излучения). Этот свет при поглощении возбуждает коле-бательные и вращательные уровни молекул. Опорными данными служат число, частота и интен-сивность колебаний молекулы, связанных с изменением дипольного момента (ИК) или поляризуемости (КР). Метод позволяет установить наличие функ-циональных групп, а также часто используется для подтверждения иден-тичности вещества с некоторым уже известным веществом путём сравнения их спектров.
  • Масс-спектрометрия . Вещество при определённых условиях (электронный удар, химическая ионизация и др.) превращается в ионы без потери атомов (моле-кулярные ионы) и с потерей (осколочные, фрагментарные ионы). Метод позволяет оп-ре-делить молекулярную массу вещества, его изотопный состав, иногда наличие функциональных групп. Характер фрагментации позволяет сделать некоторые вы-во-ды об особенностях строения и воссоздать структуру исследуемого соеди-нения.
  • Метод ядерного магнитного резонанса (ЯМР) основан на взаимодействии ядер, обладающих собственным магнитным моментом (спином) и помещенных во внешнее постоянное магнитное поле (переориентация спина), с переменным электромагнитным излучением радиочастотного диапазона. ЯМР представляет собой один из самых главных и информативных методов определения химической структуры. Метод используют также для изучения пространственного строения и динамики молекул. В зависимости от ядер, взаимодействующих с излучением различают, например, метод протонного резонанса ПМР, ЯМР 1 Н), позволяющий определять положение атомов водорода в молекуле. Метод ЯМР 19 F позволяет определять наличие и положение атомов фтора. Метод ЯМР 31 Р дает информацию о наличии, валентном состоянии и положении атомов фосфора в молекуле. Метод ЯМР 13 С позволяет определять число и типы углеродных атомов, он используется для изучения углеродного скелета молекулы. В отличие от первых трёх в последнем методе используется неосновной изотоп элемента, поскольку ядро основного изотопа 12 С имеет нулевой спин и не может наблюдаться методом ЯМР.
  • Метод ультрафиолетовой спектроскопии (УФ спектроскопия) или спектроскопия электронных переходов. Метод основан на поглощении электро-магнитного излучения ультрафиолетовой и видимой области спектра при переходе электронов в молекуле с верхних заполненных энергетических уровней на вакант-ные (возбуждение молекулы). Чаще всего используется для определения наличия и характеристики сопряженных π-систем.
  • Методы аналитической химии позволяют определять наличие некоторых функциональных групп по специфическим химическим (качественным) реакциям, факт протекания которых можно фиксировать визуально (например, появление или изменение окраски) или с помощью других методов. Помимо химических методов анализа в органической химии все большее применение находят инструментальные аналитические методы, такие как хроматография (тонкослойная, газовая, жид-костная). Почетное место среди них занимает хроматомасс-спектромерия, позво-ляющая не только оценить степень чистоты полученных соединений, но и полу-чить масс-спектральную информацию о компонентах сложных смесей.
  • Методы исследования стереохимии органических соединений . С начала 80 г.г. стала очевидной целесообразность разработки нового направления в фармакологии и фармации, связанного с созданием энантиомерно чистых лекарственных средств с оптимальным соотношением терапевтической эффективности и безопасности. В настоящее время примерно 15% всех синтезируемых фармпрепаратов представ-лены чистыми энантиомерами. Отражением данной тенденции стало появление в научной литературе последних лет термина chiral switch , что в русском переводе означает ”переключение на хиральные молекулы”. В связи с этим особое значение в органической химии приобретают методы установления абсолютной конфи-гурации хиральных органических молекул и определения их оптической чистоты. Основным методом определения абсолютной конфигурации следует считать рентгеноструктурный анализ (РСА), а оптической чистоты - хроматографию на колонках с неподвижной хиральной фазой и метод ЯМР с использованием специальных дополнительных хиральных реагентов.

Связь органической химии с химической промышленностью

Основной метод органической химии - синтез - тесно связывает органическую химию с химической промышленностью. На основе методов и разработок синтетической органической химии возник малотоннажный (тонкий) органический синтез, включающий производство лекарств, витаминов, ферментов , феромонов, жидких кристаллов, орга-нических полупроводников, солнечных батарей и др. Развитие крупнотоннажного (основ-ного) органического синтеза также базируется на достижениях органической химии. К основному органическому синтезу относится производство искусственных волокон, пластмасс, переработка нефти, газа и каменноугольного сырья.

Рекомендуемая литература

  • Г.В. Быков, История органической химии , М.: Мир, 1976 (http://gen.lib/rus.ec/get?md5=29a9a3f2bdc78b44ad0bad2d9ab87b87)
  • Дж. Марч, Органическая химия: реакции, механизмы и структура , в 4 томах, М.: Мир, 1987
  • Ф. Кери, Р. Сандберг, Углубленный курс органической химии , в 2 томах, М.: Химия, 1981
  • О.А. Реутов, А.Л. Курц, К.П. Бутин, Органическая химия , в 4 частях, М.: « Бином, Лаборатория знаний», 1999-2004. (http://edu.prometey.org./library/autor/7883.html)
  • Химическая энциклопедия , под ред. Кнунянца, М.: «Большая Российская энциклопедия», 1992.

Органическая химия
Понятие органической химии и причины её выделения в самостоятельную дисциплину

Изомеры – вещества одинакового качественного и количественного состава (т.е. имеющие одинаковую суммарную формулу), но разного строения, следовательно, различными физическими и химическими свойствами.

Фенантрен (справа) и антрацен (слева) - структурные изомеры.

Краткий очерк развития органической химии

Первый период развития органической химии, называемый эмпирическим (с середины XVII до конца XVIIIвека), охватывает большой промежуток времени от первоначального знакомства человека с органическими веществами до возникновения органической химии как науки. В этот период познание органических веществ, способов их выделения и переработки происходило опытным путем. По определению знаменитого шведского химика И. Берцелиуса, органическая химия этого периода была «химией растительных и животных веществ». К концу эмпирического периода были известны многие органические соединения. Из растений были выделены лимонная, щавелевая, яблочная, галловая, молочная кислоты, из мочи человека – мочевина, из мочи лошади – гиппуровая кислота. Обилие органических веществ послужило стимулом для углубленного изучения их состава и свойств.
Следующий период, аналитический (конец XVIII - середина XIX века), связан с появлением методов установления состава органических веществ. Важнейшую роль в этом сыграл открытый М. В. Ломоносовым и А. Лавуазье закон сохранения массы (1748), положенный в основу количественных методов химического анализа.
Именно в этот период было установлено, что все органические соединения содержат углерод. Кроме углерода, в составе органических соединений были обнаружены такие элементы, как водород, азот, сера, кислород, фосфор, которые в настоящее время называют элементами-органогенами. Стало ясно, что органические соединения отличаются от неорганических прежде всего по составу. К органическим со­единениям существовал тогда особое отношение: их продолжали счи­тать продуктами жизнедеятельности растительных или животных организмов, которые можно получить только с участием нематериальной «жизненной силы». Эти идеалистические воззрения были опровергнуты практикой. В 1828 г. немецкий химик Ф. Велер синтезировал органическое соединение мочевину из неорганического цианата аммония.
С момента исторического опыта Ф. Велера начинается бурное развитие органического синтеза. И. Н. Зинин восстановлением нитробензола получил , положив тем самым начало анилинокрасочной промышленности (1842). А. Кольбе синтезировал (1845). М, Бертло – вещества типа жиров (1854). А. М. Бутлеров – первое сахаристое вещество (1861). В наши дни органический синтез составляет основу многих отраслей промышленности.
Важное значение в истории органической химии имеет структурный период (вторая половина XIX - начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был великий русский химик А. М. Бутлеров. Основные положения теории строения имели большое значение не только для своего времени, но служат научной платформой и для современной органической химии.
В начале XX века органическая химия вступила в современный период развития. В настоящее время в органической химии для объяснения ряда сложных явлений используются квантово-механические представления; химический эксперимент все больше сочетается с использованием физических методов; возросла роль различных расчетных методов. Органическая химия превратилась в такую обширную область знаний, что от нее отделяются новые дисциплины – биоорганическая химия, химия элементоорганических соединений и др.

Теория химического строения органических соединений А. М. Бутлерова

Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе "О химическом строении вещества".

Основные положения теории химического строения А.М.Бутлерова:

  1. Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С2Н6О отвечают два разных соединения: - смотрите .
  2. Свойства веществ зависят от их химического строения. Химическое строение – это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга - как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир – это газ без запаха, нерастворимый в воде, t°пл. = -138°C, t°кип. = 23,6°C; этиловый спирт - жидкость с запахом, растворимая в воде, t°пл. = -114,5°C, t°кип. = 78,3°C.
    Данное положение теории строения органических веществ объяснило явление , широко распространенное в органической химии. Приведенная пара соединений – диметиловый эфир и этиловый спирт – один из примеров, иллюстрирующих явление изомерии.
  3. Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства.
  4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями).
  5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами.

А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, трет. бутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества.

Лучшие статьи по теме