Для школьников и родителей
  • Главная
  • Внешкольная жизнь
  • Проводящие полимеры основы электроники 21 века. Проводящие полимеры — технология настоящего и будущего. Корреляция химической структуры и электропроводности

Проводящие полимеры основы электроники 21 века. Проводящие полимеры — технология настоящего и будущего. Корреляция химической структуры и электропроводности

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2014 год

Тема: Полимеры и их применение в XXI веке

1. Полимеры

1. Определение полимер поликонденсация молекулярный

v По своему определению, полимер -- это высокомолекулярное соединение, содержащее в своём составе достаточное количество мономеров или «мономерных звеньев.

v Иными словами, полимеры это линейные цепи, состоящие из большего (N>1) числа одинаковых звеньев. К примеру, для синтетических полимеров N~ 102-104.

v Как правило, полимеры -- вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

2. Первое получение полимера:

v В 1867 году российский химик Александр Бутлеров получил первый полимер - неизвестный ранее полиизобутилен.

v А в 1910 году Сергей Лебедев, тоже российский химик, синтезировал первый образец искусственного каучука {(CH3)2C=CH2}n

3. Реакции получения полимеров - поликонденсация и полимеризация:

v В основном, все полимеры получают двумя методами - реакциями поликонденсации и полимеризации.

v В реакцию полимеризации вступают молекулы, содержащие кратную (чаще - двойную) связь. Такие реакции протекают по механизму присоединения, всё начинается с разрыва двойных связей (реакция №1- получение полиэтилена):

v Этим видом реакции получают многие полимеры, в том числе капрон.

Размещено на http://www.allbest.ru/

2014 год

1. Классификация полимеров:

2. Структура полимеров:

3. Применение:

v Благодаря ценным свойствам, полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве, медицине. Автомобиле- и судостроении, авиастроении и в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы).

v На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия.

2. Полимеры. Применение в XXI веке

v Наука уже давно не стоит на месте и за тот период времени от открытия полимера до наших дней, создано великое множество модификаций этого удивительного вещества. Одними из последних разработок являются следующие три полимера, каждый из которых обладает уникальными свойствами.

1. «Умный пластилин»

v Главным компонентов такого пластилина является полидиметилсилоксан - (C2H6OSi)n. Этот полимер сочетает в себе несколько необычных свойств. Так, в зависимости от разных условий среды, он ведёт себя по-разному: в состоянии покоя он растекается как жидкость, при резком механическом воздействии разрывается на куски как твердое тело.

v “Умный пластилин” был получен случайно, его изобретатель смешал силиконовое масло с борной кислотой в надежде получить новый вид резины, но клейкая масса оказалась не на что не похожей.

2. Гидрогель

v Гидрогели - представляют собой твердые гранулы, полимерное вещество способное за пару часов увеличится в объеме больше чем в десять раз. Все что для этого нужно это вода, разбухнув гранулы, станут мягкими как воск, когда вода испарится, они снова уменьшатся и затвердеют. Подобные вещества называются - супер-абсорбентами, они не только поглощают огромное количество воды, набухший полимер удерживает её внутри собственными молекулами.

v При поглощении растворителя полимером происходит растяжении клубков, т.е. в исходном состоянии сжатый полимерный клубок поглощает в себя растворитель, например воду и происходит её включение внутрь клубка.

v Этот принцип лежит и в основе эко-почвы, гидрогели, используемые в сельском хозяйстве. Обычно при поливе растений большая часть воды уходит в более глубокие слои почвы. Добавленный в почву гидрогель не позволяет утечь ей как сквозь пальцы, даже если растение пустит корни сквозь гранулу, вода из неё не выльется.

v Так как молекулу воды встроены внутрь полимерных цепей гидрогеля, то при физическом разрушении гидрогели не наблюдается вытекания воды, а система сохраняет такие же свойства, как и до разрушения.

v Самый яркий пример работы супер-абсорбента - детские одноразовые подгузники, даже тот, кто не сталкивался с ними, знает принцип работы. В многослойной конструкции содержится тот же полимер впитывающий жидкость как губка. Гидрогель, подобное вещество из подгузника способен выполнять и более серьезную работу, например в нефтедобывающей промышленности.

v В нефтедобыче давно существуют серьезные проблемы. При откачке на каждую тонну “черного золота” приходится три тонны воды. На очистку нефти от лишней жидкости тратятся огромные средства. Долгое время ученые искали способ отделить нефть от воды до того как она попадет в трубопровод, решение было найдено в лаборатории Московского государственного университета.

v Полимерная жидкость закачивается в нефтяную скважину и она ведет себя по-разному в зависимости от того проходит скважина через водный пласт или через нефтеносный пласт.

v Принцип действия достаточно прост. Попав в скважину, полимерная жидкость по разному реагирует на нефть и воду, с “черным золотом” она в реакцию не вступает, но когда на своем пути полимер встречает воду, он тут же впитывает её. Набухший гель закупоривает пласт воды и не выпускает её наружу. Расширение гидрогеля создает дополнительное давление на нефть что приводит к её выдавливанию наружу в чистом состоянии.

3. «Умное лекарство

v Некоторые полимеры обладают свойством реагировать на изменения внешней среды, так “умный пластилин” меняет цвет в зависимости от температуры. В холодной воде заметно темнеет, если перенести его в воду комнатной температуры возвращается к своему первоначальному цвету. При изменении температуры изменяется плотность клубка, т.е. чем ниже температура, тем клубок имеет меньший объем и таким образом при понижении температуры происходит выдавливание красителя, а при его увлечении краситель втягивается в клубок, что и приводит к изменению цвета.

v Полимер выдавливает краску как губка воду, а что если заменить краситель лекарством, сможет ли полимер контролировано выдавать нужную дозу препарата? Есть такое направленное транспортное лекарство в живом организме, эта проблема, которая решается и которую необходимо решать достаточно серьезно бьются.

v Большая часть лекарственных препаратов расходуется впустую. Таблетка не умеет находить больной орган, растворившись в желудке, она через кровь разойдется по всему организму, до нужного места доберется не более 10% препарата. В идеале, лекарство должно попадать сразу к больному органу и не вызывать побочных эффектов.

v “Умные полимеры” могут реагировать не только на температуру, они чувствительны к любому изменению среды, на которую они будут запрограммированы. Мы знаем, что ранение сопровождается подкислением, т.е. среда становится кислой, а вот этот гелий сделан, так что при подкислении он немного сжимается и вытесняет лекарство, которое ему было введено.

v На основе полимерного геля создали уникальное лекарство - ранозаживляющие гидрогели. Гидрогель состоит из восьми компонентов, которые смешиваются в дистиллированной воде в определенной последовательности. В промышленных масштабах каждый компонент добавляется с определенным интервалом времени, при реакции эти вещества создают стойкую полимерную структуру, в которую затем добавляется лекарство.

v Гель представляет собой транспортное средство, который в микрокапсулах содержит лекарственный препарат, еще его называют “умный гель” - потому что не зависимо от людей, которые его применяют, он сам ищет и находит места поражения и оказывает помощь. В составе гидрогеля не одно а сразу несколько лекарств, попав на рану полимер отдает их поочередно, в зависимости от того что требуется организму обезболить или начать процесс заживления, лекарство на рану поступают постепенно причем продолжительное время, а потом его можно просто смыть водой. До этой работы ничего подобного в России не было.

v По тому же принципу действует и оболочка капсулы (таблетки), она изготовлена из специального полимера, он отвечает не только за доставку медикаментов по назначению, но и за выделение определенной дозы лекарства в течение долгого времени.

Список литературы

1. ru.wikipedia.org

2. http://www.sigmapluss.ru/umniipolimer.php

3. http://www.kation-msk.ru/ru/press/article/15_8.html

4. http://xn--e1aogju.xn--p1ai/

5. http://www.km.ru/referats/7FA5CF33809646779974A80FDAD7A6CC

Размещено на Allbest.ru

...

Подобные документы

    Образование высокомолекулярного соединения из простых молекул-мономеров в ходе реакций полимеризации и поликонденсации. Процесс поликонденсации – ступенчатый процесс, в котором образующиеся продукты взаимодействуют друг с другом. Молекулярные цепи.

    реферат , добавлен 28.01.2009

    Изучение понятия и строения полимеров, их классификации по происхождению, форме молекул, по природе. Характеристика основных способов получения - поликонденсации и полимеризации. Пластмассы и волокна. Применение полимеров в медицине и строительстве.

    презентация , добавлен 12.10.2015

    Практическое проведение эмульсионной полимеризации и сополимеризации акриловых мономеров, скорость и кинетика реакции, влияющие факторы. Способ предварительного создания концентрированной эмульсии, образование микроэмульсии и анализ ее дисперсности.

    статья , добавлен 22.02.2010

    Классификация реакций поликонденсации, глубина ее протекания, уравнение Карозерса. Влияние различных факторов на молекулярную массу и выход полимера при поликонденсации. Методы осуществления реакции. Полимеры, получаемые реакцией поликонденсации.

    контрольная работа , добавлен 19.09.2013

    Полиэтилен - высокомолекулярное соединение, полимер этилена; белый твёрдый продукт, устойчивый к действию масел, ацетона, бензина и других растворителей. Сфера применения полиэтилена. Области применения полиэтиленовых труб и их основные преимущества.

    реферат , добавлен 27.10.2010

    Общее понятие о полимерах. Процесс получения высокомолекулярных соединений. Биосовместимые материалы и устройства. Органические, элементоорганические, неорганические полимеры. Природные органические полимеры. Применение биоклеев в неинвазивной терапии.

    реферат , добавлен 23.04.2013

    Что такое полимеры и особенности развития науки о полимерах. Описание различий в свойствах высоко- и низкомолекулярных соединений. История развития производства полимеров. Технологический процесс образования, получения и распространения полимеров.

    реферат , добавлен 12.06.2011

    Образование высокомолекулярного соединения из молекул-мономеров в ходе реакций полимеризации, поликонденсации. Процесс поликонденсации – ступенчатый процесс, в котором образующиеся продукты взаимодействуют друг с другом. Каталитическая полимеризация.

    реферат , добавлен 28.01.2009

    Полимеры как органические и неорганические, аморфные и кристаллические вещества. Особенности структуры их молекулы. История термина "полимерия" и его значения. Классификация полимерных соединений, примеры их видов. Применение в быту и промышленности.

    презентация , добавлен 10.11.2010

    Классификация, строение полимеров, их применение в различных отраслях промышленности и в быту. Реакция образования полимера из мономера - полимеризация. Формула получения полипропилена. Реакция поликонденсации. Получение крахмала или целлюлозы.

Электропроводящие полимеры - новый класс полимеров, появившихся сравнительно недавно. В последние годы это направление в полимерной химии стремительно развивается. Использование полимерных материалов в качестве носителей электропроводящих наполнителей известно уже давно. Традиционные электропроводящие полимерные материалы представляют собой композиции на основе различных полимеров (тер-мо- и реактопласты) и электропроводящих наполнителей (сажа, графит, углеродные, металлические и металлизированные волокна, металлическая пудра) и применяются в антистатических изделиях, электромагнитных защитных покрытиях, высоко-омных резисторах, электрических неметаллических нагревателях и токопроводящих лаках. Однако в настоящее время появились новые материалы, в которых электропроводностью обладают уже сами макромолекулы или определенным образом построенные надмолекулярные образования, так называемые «супрамолекулы»-ассоциаты, включающие в свою структуру как органические макромолекулы так и неорганические ионы.

За развитие этого направления в науке в последнее время неоднократно присуждались Нобелевские премии. Например, в 1996 г. премия присуждена англичанину Г. Крото и американцам Р. Карл и Р. Смелли за открытие фуллеренов. В1999 г. премия присуждена Де Жену за теорию жидких молекулярных кристаллов, в 2000 г. премия присуждена американцу Аллану Хигеру и химикам А. Макдиармиду (США) и X. Ширакава (Япония) за развитие электропроводящих полимеров. И, наконец, в 2003 г. Гинзбургу (Россия) за разработку теории проводимости в полимерах.

Можно представить три основных варианта переноса электронов в макромолекулярном веществе: 1 - транспорт электронов, осуществляемый окислительно-восстановительными молекулами, играющими роль подвижных переносчиков; транспорт может сопровождаться или не сопровождаться переносом электрона от одного переносчика к другому при их встрече; 2 - «прыжковый» электронный перенос между окислительно-восстановительными группами, связанными с основным молекулярным каркасом или собранными в супра-молекулярный ассоциат за счет нековалентных взаимодействий; 3 - электронная проводимость вдоль системы сопряженных ти-связей, в которую могут входить другие группы, способные к передаче электрона, например напряженные циклические структуры, гетероатомы, имеющие свободные, не участвующие в образовании связей, электроны. В осуществлении процесса переноса электронов могут участвовать как органические так и неорганические компоненты.

В идеальном случае для полимеров с системой сопряженных двойных связей возможны два типа веществ с сопряженными связями: с зоной, заполненной наполовину (металлическая модель) и с зоной, заполненной полностью - полупроводниковая модель. Во всех случаях удлинение участков сопряжения, реализуемое в полимерах, должно приводить к увеличению проводимости, так как оно сопровождается как уменьшением ширины запрещенной зоны, так и уменьшением числа межмолекулярных барьеров, которые необходимо преодолевать носителям тока при их направленном движении под действием внешнего электрического поля. Механизм проводимости полимеров должен включать следующие элементы: возникновение свободных носителей тока, движение этих носителей в области полисопряжения и переход носителей от одного участка сопряжения к другому. Предполагается, что полимер представляет собой электронно-неоднородную систему, в которой области полисопряжения, характеризующиеся металлической проводимостью, разделены диэлектрическими участками. Перенос носителей через диэлектрические прослойки и является активаци-онным барьером. Полупроводниковые свойства полимера должны зависеть от общей протяженности системы сопряженных связей, компланарности структуры основной цепи, природы боковых групп, от наличия в цепи сопряжения гетероато-мов, имеющих на внешней орбите электроны, не участвующие в образовании химической связи и др.

Полимеры с сопряженными связями обладают полупроводниковыми свойствами и в них можно инжектировать электроны с присоединенного к ним металлического электрода. Электропроводность таких полимеров чувствительна к освещению и поэтому на их основе можно создавать различные светочувствительные устройства, например полимерные световоды. На основе таких полимеров уже созданы световоды, полупроводниковые транзисторы и теристоры. В ближайшее время на основе таких полимеров вполне вероятно будут созданы реально плоские телевизорные экраны, дорожные знаки, плоские дисплеи компьютерных мониторов, светящиеся белым светом внутренние стены медицинских учреждений.

Электронная структура молекул полимера с сопряженными связями в невозбужденном состоянии находится в равновесии и их электропроводность, как правило, мала (о ~ 10"10 омлсм~1}. Чтобы превратить такие полимеры в электропродящие их модифицируют химически или электрохимически - «допируют». Допирование - это процесс придания полимерам свойств электропроводности. В зависимости от допирующего компонента различают р-допирование, когда допирующий элемент стягивает на себя электроны и n-допирование, когда допирующий элемент отдает электроны. Техника допирования несложна, но имеет свою специфику, так как желательно добиться как можно более равномерного распределения «допанта» (вещества, которым допируют полимер).

Тонкие пленки полиацетилена, например, нанесенные в виде покрытий на полимерную подложку (полиэтилен, стекло и др.) получают погружением носителя в раствор катализатора, в качестве которого может быть использован NaBH4xCo(NO3)2 при температуре -80°, а затем при -30° обработанную подложку вносят в атмосферу ацетилена. При этом полимеризация ацетилена, сорбированного на подложке, происходит за несколько секунд. После удаления катализатора получившуюся пленку полиацетилена обрабатывают допантом (например парами иода: проводимость более 200 ом^.см"1). Полученная пленка по внешнему виду напоминает алюминиевую фольгу, а по эластичности соответствует подложке (полиэтилен). Такой полупроводник является полупроводником р-типа (движение (+) зарядов - «дырок» после введения допанта в полимере увеличивается в триллион раз, что и обеспечивает проводимость). Пятифтористый мышьяк, хлор, бром увеличивают проводимость р-типа. Введение К, Na, AsF5 (более 1%) резко меняет проводимоть от дырочной к металлической, величина которой зависит от количества допанта. Полимерные листы из допированного полиацетилена способны преобразовывать световую энергию в электрическую с КПД близким к КПД кремниевых солнечных батарей (после термокаталитического старения проводимость 105 ом^.см"1).

В отличие от ацетилена пиррол (получаемый из каменноугольной смолы) полимеризуется значительно легче электрохимическим способом. Полипиррол образует пленку на одном из электродов ячейки при пропускании через его раствор электрического тока. Допирование полипиррола проводят также электрохимическим методом. Стабилизируют его свойства, осаждая его на ПВХ-по-ристую мембрану. Использование мембраны обеспечивает свободный ток ионов. Таким путем получают полипиррольные электроды, которые могут использоваться в аккумуляторных батареях. Можно изготовлять пластины и прессованием порошка полипиррола, получаемого полимеризацией в растворе (метанол, окислитель FeCl3 + FeCl2 окислительный потенциал 500 мВ, пиррол/FeCl3 - 233, 0-20°, 20 мин.). Электропроводность полученного полимера 190-220 ом"1, см"1. Пленки полипиррола получают осаждением из водного раствора РеС13 на подложку из полиэтилентерефталата с покрытием из полиметилметакрилата. Описаны также и другие методы допирования.

В результате химического взаимодействия с донорами электронов или акцепторами электронов проводимость указанных выше полимеров с сопряженными двойными связями может достигать проводимости ртути. Электропроводность электропроводящих полимеров связана с подвижностью электронов в полимерных молекулах, в которых тс-электронное облако, образованное системой сопряженных связей при допировании, приходит в возбужденное состояние. Такое состояние и обеспечивает электропроводность, близкую к металлической.

Сопряженные полиолефиновые цепи, несущие электроно-акцепторную группу на одном конце и электроне-донорную на другом, представляют собой поляризованные молекулярные провода, которые должны обладать свойствами предпочтительного электронного переноса, имея «дырочную» или «электронную» проводимость, т.е. они должны работать как выпрямители. Описано несколько таких устройств. Авторы работы предполагают, что дальнейшее развитие работ по «дизайну» молекулярных проводов может происходить по следующим направлениям: 1 - замена сопряженного полиолефинового фрагмента такими структурами как конденсированные олиготиофены, олигопирролы, ароматические группы или центры координации металлов; 2 - варьирование концевых групп, активных в окислительно-восстановительных процессах, которые одновременно могут также играть роль «якоря», прикрепляющего молекулу проводника к подложке; 3 - организация фрагментов, играющих роль молекулярных проводов, образованных за счет ассоциации и самосборки, основанной на процессах распознания.

Первые поколения полимеров с сильно развитой системой сопряженных связей появившиеся в восьмидесятые годы прошлого века отличались ограниченной растворимостью, они неплавки и трудно прессуемы. С того времени исследователи разработали полимеры с внутренней проводимостью (ПВП), которые возможно перерабатывать в порошок, пленку, волокно различными методами с применением растворителей и катализаторов. Новое поколение ПВП более легко поддается обработке. Они стабильны на воздухе и даже могут быть смешаны с другими полимерами для получения составов с заданной электропроводностью.

В качестве электропроводящих и полупроводящих материалов в литературе описаны также комплексы полимеров с металлами, в частности с металлами переходной валентности, в которых рецепторами являются полимерные органические структуры с системой сопряженных связей, а субстратами - металлы переходной валентности.

Существует несколько способов связывания субстрата с рецептором, зависящих от пространственного строения молекулы рецептора. Если связывание субстрата и рецептора происходит через полость, имеющуюся в пространственном строении молекулы рецептора, то такие ансамбли часто называют комплексами включения или крипта-тами. Путем варьирования природы и числа участвующих в связывании фрагментов и соединительных мостиков можно получить различные мак-рополициклические структуры, которые при связывании с ионами металлов дают биядерные крип-таты различных типов. Было синтезировано множество лигандов, образующих биядерные комплексы. Для этого использовались различные реакции типа амин + карбонил = имин. Эти лиганды образуют биядерные комплексы металлов, а также каскадные комплексы с мостиковыми группами.

Описано большое количество структур образованных полиядерными кластерами металлов,которые характеризуются различными геометрическими параметрами. Некоторые из этих кластеров могут служить прототипами «супрамолекуляр-ных» металлов и обладать металлической электропроводностью. Получены гигантские кластеры, содержащие 70-146 атомов меди или 309-561 атом палладия, проявляющие металлические свойства. Перспективны также хелатные соединения металлов.

В качестве электропроводящих полимеров используются также различные производные фуллеренов.

Проводящие полимеры используются главным образом в качестве антикоррозийного покрытия, для защиты крупных металлических сооружений, например мостов. Допи-рованные полимеры используются в настоящее время в качестве различных антистатических добавок, в частности, антистатический слой из полианилина защищает компьютерные диски, выпускаемые компанией Хитачи. Такие полимеры представляют интерес для антирадарных покрытий, в создании световодов, в мембранных технологиях для разделения полярных жидкостей и газов, для чувствительных газовых и сенсоров, в литографических процессах и фотографии. Процесс допирования и дедопи-рования полимеров может управляться внешним напряжением, что используется для создания легких аккумуляторных батарей.

Перспективным направлением использования электропроводящих полимеров легко поддающихся формированию и обработке - миниатюризация в микроэлектронике с использованием в электронных твердотельных схемах компонентов нужной конфигурации с размерами молекулярного уровня. Вероятно использование электропроводящих полимеров в конденсаторах, элементах памяти компьютеров, фотопреобразователях. В последнее время появилось много публикаций, особенно в Интернете о других областях применения электропроводящих полимеров. Сообщается, что некоторые из них при воздействии электрического напряжения или при химических воздействиях изменяют цвет, что используется при создании электронных оптических переключателей и устройств памяти. Электропроводящие полимеры перспективны для создания межэлементарных соединений с размерами молекулярного подуровня (1 нм), для изготовления высоковольтных кабелей, допированных таким образом, что проводящей частью окажется центральная, а наружная будет изолятором, в различных устройствах электротехнического и электронного оборудования и электроприборостроения.

Прогресс вычислительной техники связывают с сочетанием электронных и оптических методов обработки информации. Фотоэлектронные компьютеры работают в тысячи раз быстрее, с высокой плотностью записи информации. Голографичес-кую внешнюю память, основанную на фотореф-рактивном эффекте (изменение физических свойств под действием света) обеспечивает, например, фотореактивный поли-1ХГ-винилкарбазол.

Исследователи фирмы «Кодак» получили трехслойную полимерную пленку, которая удваивает частоту излучения идущего от полупроводникового лазера - переводит свет из близкого ИК-диапо-зона в видимый голубой, что позволяет более плотно записывать информацию на компакт-диске. За счет изменения состава боковых групп полиацетилена получен полидиацетилен, легче растворимый. Из него легче формировать пленки, которые являются фоторефрактивными жидкокристаллическими полупроводниками. С использованием то-копроводящих полимеров разработаны транзисторы с затвором и электронными переключателями (электрическим током между входом и выходом управляет специальный электрод-затвор). Переход к чисто полимерным устройствам позволит использовать простые методы трафаретной печати на изолирующий слой из полиэтилентерефталатной пленки. В таком устройстве на полиэтилентереф-талатную пленку наносят пасту, бислой закрепляют на гибкой ленте матрицы, сверху изолятора из того же электропроводящего полимера делают входной и выходной электроды (органический полупроводник - дигексилсесквитиофен, содержащий шесть тиофеновых блоков). На смену тяжелым свинцовым, кадмий-никелевым, железо-никелевым аккумуляторам в настоящее время пришли литиевые. Использование электропроводящих полимеров для изготовления активных частей источников тока позволяет исключить применение для них тока цветных металлов и снизит массу аккумуляторов вдвое, обеспечить электрохимическую обратимость, реализует большие значения удельной мощности и энергоемкости и безотходную технологию их изготовления.

Разработан ряд интересных токопроводящих полимеров. Так гель на основе поликротоновой кислоты в слабощелочных водных растворах способен изменять свой объем под действием электрического тока. Британская компания Геловейтен разработала материал, способный менять свои свойства от диэлектрика до проводника. В Англии разработаны полимерные светодиоды, на основе полимеров с чередующимися фениленовыми и винильными группами и боковыми группами ОС6Н13 и CN. При помещении такой пленки между электродами она испускает желто-зеленый свет. Они перспективны для создания экранов телевизоров и дисплеев.

"Химическая промышленность сегодня", №5, 2007

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Электропроводимость полимеров

Отличительным свойством синтетических полимеров до недавнего времени считалось их нулевая электропроводность. Все привычные типы пластмасс являются хорошими диэлектри - ками благодаря прочным ковалентным связям, образующим макромолекулярные соединения.

Однако эпохальное достижение трех нобелевских лауреатов 2000 года - Алана МакДайармида (США), Алана Хигеру (США) и Хидеки Ширакаве (Японии) - круто изменило общепринятую точку зрения. Этим ученым впервые удалось превратить пластмассу в электрический проводник.

Как это часто бывает в истории науки, открытию помогла случайность. Студент Ширакавы как - то по ошибке добавил слишком много катализатора, в результате чего бесцветный пластик вдруг стал отражать свет подобно серебру, и это навело на мысль о том, что он перестал быть изолятором. Дальнейшие исследования привели к открытию полимера с проводимостью,в десят - ки миллионов раз превосходящей обычный пластик. Это открывает путь к новой электронике ХХI века, основанной на органических материалах. Ведь органические материалы легче и гибче традиционного кремния, им проще придать нужную форму, в том числе и трехмерную.

Что же представляют собой проводящие полимеры? Если коротко, то основой для них служат вещества с молекулами, в которых имеются чередующиеся двойные углеродные связи. В чистом виде они не являются проводниками, поскольку электроны в них локализованы в силу их участия в образовании ковалентных химических связей. Для освобождения электронов применяются различные примеси, после их ввода появляется возможность перемещения зарядов (электронов и дырок) вдоль молекулярной цепи. Распространенным примером проводящего полимера является полианилин. На проводящих полимерах основана молекулярная электроника. Например, ученые из Аризонского университета создали ограничитель напряжения из семи анилиновых фрагментов. Разрабатываются молекулярные транзисторы, конденсаторы, диоды.

Американская компания Superconnect разработала материал, который в будущем поможет ускорить передачу данных в Интернете в сто раз! Это особый полимер, склеенный с набором фуллеренов, позволяющий управлять потоками света при помощи других потоков (т.е. чисто фотонный транзистор).

Рис 109. Сочетание фуллеренов и

полимерных цепей _ ключ к

сверхбыстрым оптическим

переключателям

Это - первый шаг на пути создания полностью оптических маршрутизаторов в Интернете. Сейчас для управления потоками данных (которые между крупными узлами передаются по оптоволокну),их преобразовывают из оптических импульсов в электронные. Чипы определяют направление передачи и переключают канал, после чего поток битов в виде электронов снова переводят в световые импульсы и отправляют к месту назначения. Такие двойные преобразо - вания - одно из узких мест, снижающих общую пропускную способность Интернета. Заменив обычные маршрутизаторы, сочетающие оптические и электронные компоненты,на полностью оптические, можно будет повысить скорость передачи данных в сто раз.

Дешевизна производства полимеров открывает перед органической электроникой новые области применения. Например, такие полимеры позволят печатать любую ИС на простых компьютерных принтерах, используя особый химический раствор вместо чернил. Это - колос - сальное технологическое и экономическое преимущество, ведь принтер прост в обращении и

стоит копейки по сравнению с традиционным дорогостоящим оборудованием для изготовления интегральных микросхем.

На принтерах, например, в ближайшее время сотрудники британской компании Cambrige Display Technologies собираются наладить выпуск видеодисплеев для мобильных телефонов и

других переносных устройств. Исходным материалом для таких дисплеев будут новые светоизлучающие полимеры, где излучение происходит в результате рекомбинации электронов и дырок. Также в скором времени следует ожидать массового производства новых пластиковых мониторов на основе полимерных матриц. На фото изображен один из лабораторных образцов таких дисплеев компании Universal Display.

Рис 110. Демонстрация гибкого

монитора на основе проводящего

полимера*

Более того – если можно печатать и проводники, и полимеры, то почему бы не напечатать на принтере сам принтер? Именно это и стремятся сделать добровольцы проекта RepRap - самореплицирующийся принтер, который сможет печатать все детали для своих копий из проводящих, полупроводящих и непроводящих полимерных чернил. Конечно же, он сможет не

только размножаться - на таком принтере можно будет запросто «распечатать» цифровую фотокамеру или мобильный телефон!

Название(я): Проводящие полимеры

Номер в каталоге: 23

Основной предмет (школа): химия, физика

Область знания (ВУЗ): комплексы с переносом заряда, органическая химия, молекулярная электроника

Актуальность: Школьники хорошо знают, что металлы и графит (теперь и графен) хорошо проводят электрический ток, однако мало кто из них задумывался, что так же себя могут вести и органические соединения, в частности, особые по составу и структуре полимеры (классические примеры - "легированный" полиацетилен, полианилин и "органические металлы"). В то же время, именно такие полимеры сейчас становятся все более востребованными в связи с развитием молекулярной, органической, печатной (гибкой) электроники, новых устройств отображения информации, технологий производства полимерных солнечных батарей и пр.

Новизна: получение полностью органического соединения, проводящего в твердом состоянии электрический ток

Цель: получение и исследование неметаллических гибких проводников

Задачи:

1. ознакомление с основами зонной теории твердого тела

2. ознакомление с основами молекулярной, органической, гибкой электроники (специальная литература от тьютора), строением, классификацией и свойствами высокомолекулярных соединений

3. анализ литературы по механизмам проводимости в органических полимерах

5. выбор метода синтеза (фотохимическая, электрохимическая, термическая, окислительная полимеризация и пр.), определение методики (если необходимо) легирования или химической модификации полимера для увеличения его проводимости (например, получение гибридных неоргано - органических материалов)

6. получение проводящего полимера в виде пленки, дисперсных сфероидов (взвеси), геля и т.д.

7. исследование электрофизических свойств полученного полимера, его химической, фотохимической, термической стабильности

8. создание прототипов устройств (если возможно)

9. обобщение результатов и анализ возможных областей применения полученного полимера.

Экспериментальные подходы: получение полимеров за счет термо-, фотополимеризации, окислительной полимеризации и пр., исследование электрофизических свойств полимера и деградации этих свойств при внешних неблагоприятных воздействиях или "в процессе эксплуатации".

Методические подходы: ознакомление с высокомолекулярными соединениями и механизмами электронной и дырочной проводимости твердых тел

Требующиеся нестандартные реактивы и ресурсы: мономеры для получения проводящего полимера, другие реактивы, установка для электрофизических измерений (возможно, и для электрохимического синтеза), сканирующая зондовая микроскопия, колебательная спектроскопия

Освоение школьником теоретического материала: строение химических соединений, стереохимия, структура различных классов полимеров, зонная теория

Навыки, получаемые школьником: методы получения высокомолекулярных соединений, работа с электрическими цепями

Предшествующий материал по школьной программе: химия углерода, ароматические и гетероциклические соединения, теория химической связи, металлы, полупроводники, диэлектрики

Роль учителя: общая помощь в реализации проекта, контроль за соблюдением техники безопасности

Возможная помощь тьюторов: обеспечение реактивами, специальной литературой, консультативная помощь, осуществление инструментального анализа (термический анализ, электрофизические измерения, колебательная спектроскопия, элементный анализ, оптическая, сканирующая зондовая микроскопия и другие измерения по необходимости).

Техника безопасности: работа с потенциально токсичными соединениями (если выбраны сооветствующие мономеры)

Примечания: лучший (но не единственный) вариант - получение полианилина за счет окислительной полимеризации солей аналиния, следует также попытаться получить другие проводящие полимеры, сравнить полимеры, проводящих по электронам и "дыркам", создать прототип устройств на основе проводящих полимеров (например, полупроводниковый слой с фотоэффектом, фотохромное покрытие и пр.).

Проводящий полимер.

Другие работы кластера "Каталог тем проектных работ" (гипертекстовый навигатор):

Данная статья посвящена не композиционным проводящим полимерам, в которых высокая электропроводность достигается за счет свойств наполнителя, а именно проводящим полимерам с собственной электропроводностью.

Сообщение о достижении металлического уровня проводимости при допировании пленок полиацетилена (ПАц), опубликованное Shirakawa et al . (1977) вызвало огромный интерес к исследованию проводящих полимеров, продолжающийся и сейчас. Хотя это был не первый пример проводящего полимера, увеличение электропроводности более чем в 10 7 раз при допировании транс-ПАц пентафторидом мышьяка или иода оказалось резким и значительным (рис. 1). Это открытие вызвало всплеск интереса к проводящим сопряженным полимерам в связи с перспективами увеличения их электропроводности.

Рис. 1. Увеличение электропроводности транс-ПАц при допировании пентафторидом мышьяка.

В 1960-х годах были исследованы другие представители класса проводящих полимеров полианилин и полипиррол и установлено, что их электропроводность составляет 330 Ом -1 × м -1 и 754 Ом -1 × м -1 , соответственно.

Теория электропроводности проводящих полимеров.

После открытия металлических свойств ПАц большинство теоретических работ выполнялось на примере этого проводящего полимера. В первых работах Longuet - Higgins и Salem (1959) и ряде других использовалась модель Хюккеля, и было показано, что цепь ПАц в основном состоянии имеет структуру с чередованием связей (рис. 1, б), а не структуру с равными длинами С-С-связей (рис. 1, а).


Рис. 2. Химическая структура транс-полиацетилена с равными длинами связей (а) и чередованием связей (б).

В 1979 г. была предложена хюккелевская модель сильной связи, послужившая основой для анализа молекулярной и электронной структуры ПАц и в настоящее время обычно именуемая моделью SSH .

Существуют две возможные фазы чередования связей, чтоозначает существование для основного состояния полимера двух альтернативных структур, I и II на рис. 3, энергии которых вырождены. Эти структуры характеризуются параметром чередования связей, принимающим значения ±1. Заметим, что значение параметра чередования связей, равное нулю, отвечает структуре с равными длинами связей. В случае, если два участка цели имеют противоположные значения параметра чередования связей, в месте, где этот параметр меняет знак, возникает дефект, как показано на рис. 3, и там же оказывается неспаренный π -электрон, не входящий в двойную связь ни в одном из участков цепи.

Рис. 3. Два возможных типа чередования связей в ПАц и образование солитона.

Полимерная цепь в целом электрически нейтральна, однако электрон в месте стыка (кинка) имеет неспаренный спин. π -Электроны двойных связей имеют спаренные спины, поэтому идеальная полимерная цепь диамагнитна, в то время как цепь с кинком слабо парамагнитна. Поскольку энергия цепи по обе стороны кинка одинакова, он может передвигаться вдоль цепи, и полная энергия при этом не меняется, т.е. неспаренный электрон является подвижным объектом, способным свободно двигаться вдоль цепи. По аналогии с одиночными (solitary ) волнами в воде подобное образование получило название солитон.

При нечетном числе углеродных связей в кольце должен возникать солитон, так как первая и последняя связи должны быть обе одинарные или двойные. Если же в кольце число связей четно, граничные условия удовлетворяются и солитон не возникает. Однако в кольце с четным числом связей могут возникать два солитона противоположного знака, солитон и антисолитон, когда нарушение чередования связей, образовавшее антисолитон, компенсирует нарушение чередования связей, приведшее к образованию солитона. Данные рассуждения применимы и к цепи конечной длины, в которой концевые группы фиксируют фазу чередования связей. Таким образом, основное состояние цепи конечной длины, на концах которой фазы чередования связей противоположны, должно содержать солитон, в противном случае солитон не образуется.

При допировании полиацетилена сильными акцепторами или донорами электронов образование заряженных солитонных состояний требует меньшей энергии, что приводит к увеличению электропроводности полимера.

Электрические свойства проводящих полимеров.

Для получения проводящих полимеров могут использоваться методы синтеза полиприсоединением и поликонденсацией.

Приведенные выше экспериментальные данные свидетельствуют о том, что ширина запрещенной зоны между валентной зоной и зоной проводимости в проводящих полимерах составляет несколько электронвольт, что сравнимо с шириной зоны в кремнии и германии. При этом ширина запрещенной зоны намного больше, чем энергия теплового движения при комнатной температуре (~ 0.025 эВ) поэтому число термовозбужденных носителей заряда при этих условиях очень мало. Соответственно мала и собственная проводимость чистых проводящих сопряженных полимеров. Такая же картина имеет место и для кремния и германия, для которых необходимо вводить небольшие количества акцепторов или доноров (легирующих добавок или допантов), чтобы примесная проводимость достигла уровня, необходимого для практического применения. Однако электропроводность свежеприготовленных проводящих полимеров часто оказывается выше уровня собственной проводимости, что является результатом случайного допирования полимера остатками катализатора, окислительными или восстановительными примесями, попавшими в него в ходе синтеза или при последующих манипуляциях. Наиболее часто встречающаяся примесь - это кислород. Влияние случайного допирования может быть нейтрализовано химической обработкой, поскольку в большинстве случаев случайное допирование вызвано окислительными примесями, в результате чего получается полупроводник р-типа; обработка восстановителями приводит к снижению электропроводности.

Максимальная электропроводность наблюдается в чистых ориентированных полимерах с большой молекулярной массой. Наибольшие полученные значения составляют ~10 7 Ом -1 м -1 для ПАц (Tsukamoto , 1992) и 2 × 10 5 Ом -1 м -1 для полианилина (Pomfret et al ., 1998). Электропроводность на единицу массы близка к величинам, характерным для нормальных металлов, или превышает их, так как меньшая плотность полимеров компенсирует более низкую электропроводность. Работа выхода металлических полимеров близка к значениям для нормальных металлов, например, для полианилина она составляет 4,8 эВ, а для ПЭДОТ - ~5 эВ, что является промежуточным значением между значениями для золота и алюминия.

Литература:

Блайт Э.Р., Блур Д. Электрические свойства полимеров. Пер. с англ. - М: ФИЗМАТЛИТ, 2008. - 376 с.

Лучшие статьи по теме