Для школьников и родителей
  • Главная
  • Из бумаги
  • Найти стороны треугольника по теореме синусов. Теорема синусов. Доказательство теоремы синусов

Найти стороны треугольника по теореме синусов. Теорема синусов. Доказательство теоремы синусов

Тригонометрия широко применяется не только в разделе алгебра — начала анализа, но также и в геометрии. В связи с этим, разумно предположить о существовании теорем и их доказательств, связанных с тригонометрическими функциями. Действительно, теоремы косинусов и синусов выводят очень интересные, а главное полезные соотношения между сторонами и углами треугольников.

С помощью данной формулы можно вывести любую из сторон треугольника:

Доказательство утверждения выводится на основе теоремы Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Рассмотрим произвольный треугольник ABC. Из вершины C опустим высоту h к основанию фигуры, в данном случае абсолютно не важна ее длина. Теперь, если рассмотреть произвольный треугольник AСВ, то можно выразить координаты точки C через тригонометрические функции cos и sin.

Вспомним определение косинуса и распишем соотношение сторон треугольника ACD: cos α = AD/AC | умножим обе стороны равенства на AC; AD = AC * cos α.

Длину AC примем за b и получим выражение для первой координаты точки С:
x = b * cos⁡α. Аналогично, находим значение ординаты С: y = b * sin α. Далее применим теорему Пифагора и выразим h поочередно для треугольника ACD и DCB:

Очевидно, что оба выражения (1) и (2) равны между собой. Приравняем правые части и приведем подобные:

На практике данная формула позволяет найти длину неизвестной стороны треугольника по заданным углам. Теорема косинусов имеет три следствия: для прямого, острого и тупого угла треугольника.

Заменим величину cos α привычной переменной x, тогда для острого угла треугольника ABC получим:

Если же угол окажется прямым, то 2bx исчезнет из выражения, так как cos 90° = 0. Графически второе следствие можно представить следующим образом:

В случае тупого угла знак «-»перед двойным аргументом в формуле сменится на «+»:

Как видно из объяснения, ничего сложного в соотношениях нет. Теорема косинусов есть не что иное, как переложение теоремы Пифагора в тригонометрических величинах.

Практическое применение теоремы

Задание 1 . Дан треугольник ABC, у которого сторона BC = a = 4 см, AC = b = 5 см, а cos α = ½. Необходимо найти длину стороны AB.

Чтобы правильно произвести расчет, нужно определить угол α. Для этого стоит обратиться к таблице значений для тригонометрических функций, согласно которой арккосинус равен 1/ 2 для угла в 60°. Исходя из этого, воспользуемся формулой первого следствия теоремы:

Задание 2 . Для треугольника ABC известны все стороны: AB =4√2,BC=5,AC=7. Требуется найти все углы фигуры.

В данном случае не обойтись без чертежа условий задачи.

Так как значения углов остаются неизвестными, для поиска решений следует использовать полную формулу для острого угла.

По аналогии нетрудно составить формулы и рассчитать значения и других углов:

В сумме три угла треугольника должны составить 180 °: 53 + 82 + 45 = 180, следовательно, решение найдено.

Теорема синусов

Теорема гласит, что все стороны произвольного треугольника пропорциональны синусам противолежащих углов. Записываются соотношения в виде тройного равенства:

Классическое доказательство утверждения проводят на примере фигуры вписанной в окружность.

Чтобы убедиться в правдивости высказывания на примере треугольника ABC на рисунке, необходимо подтвердить тот факт, что 2R = BC / sin A. Затем доказать, что и прочие стороны соотносятся с синусами противоположных углов, как 2R или D окружности.

Для этого проводим диаметр круга из вершины B. Из свойства углов вписанных в окружность ∠GCB – прямой, а ∠CGB либо равен ∠CAB, либо (π — ∠CAB). В случае с синусом последнее обстоятельство не значительно, так как sin (π –α) = sin α. На основании приведенных умозаключений можно утверждать, что:

sin ∠CGB = BC/ BG или sin A = BC/2R,

Если рассматривать другие углы фигуры, получим расширенную формулу теоремы синусов:

Типовые задания на отработку знания теоремы синусов сводятся к поиску неизвестной стороны или угла треугольника.

Как видно из примеров, решение подобных задач не вызывает затруднений и заключается в проведении математических расчетов.

Теорема синусов

Теорема синусов устанавливает зависимость между величиной углов треугольника и противолежащих ему сторон.

Формулировка теоремы синусов:
Стороны треугольника пропорциональны синусам противолежащих углов

Где
R - радиус описанной вокруг треугольника окружности
a, b, c - стороны треугольника
α, β, γ - величины противолежащих этим сторонам углов

Доказательство теоремы синусов



Доказательство теоремы синусов происходит с помощью дополнительных построений.

Построим произвольный треугольник , вписанный в окружность. Обозначим его как ABC.
Дополнительно построим диаметр окружности , в который вписан произвольный треугольник, но так, чтобы он проходил через один из его углов. Диаметр равен двойному радиусу окружности (2R).

Примем во внимание, что одним из свойств прямоугольного треугольника, вписанного в окружность является то, что его гипотенуза, является диаметром окружности, в которую он вписан.

Обозначим диаметр для описанной окружности как BD. Образовавшийся треугольник BCD является прямоугольным, поскольку его гипотенуза лежит на диаметре описанной окружности (свойство углов, вписанных в окружность).

Таким образом, дополнительно построенный треугольник, у которого одна общая сторона с построенным ранее произвольным треугольником, а гипотенуза совпадает с диаметром окружности - является прямоугольным . То есть треугольник DBC - прямоугольный.

Для доказательства всей теоремы, поскольку размеры треугольника ABC выбраны произвольным образом, достаточно доказать, что соотношение одной произвольной стороны к противолежащему ей углу равно 2R.

Пусть это будет 2R = a / sin α , то есть если взять по чертежу 2R = BC / sin A.

Поскольку, углы, вписанные в окружность, опирающиеся на одну и ту же дугу, равны , то угол CDB либо равен углу CAB (если точки A и D лежат по одну сторону от прямой BC), либо равен π - CAB (в противном случае).

Обратимся к свойствам тригонометрических функций. Поскольку sin(π − α) = sin α , то указанные варианты построения треугольника все равно приведут к одному результату.

Вычислим значение 2R = a / sin α, по чертежу 2R = BC / sin A. Для этого заменим sin A на соотношение соответствующих сторон прямоугольного треугольника.

2R = BC / sin A
2R = BC / (BC / DB)
2R = DB

А, поскольку, DB строился как диаметр окружности, то равенство выполняется.
Повторив то же рассуждение для двух других сторон треугольника, получаем:

Теорема синусов доказана.

a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R , {\displaystyle {\frac {a}{\sin \alpha }}={\frac {b}{\sin \beta }}={\frac {c}{\sin \gamma }}=2R,}

где a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} - стороны треугольника, α , β , γ {\displaystyle \alpha ,\beta ,\gamma } - соответственно противолежащие им углы, а R {\displaystyle R} - радиус окружности, описанной около треугольника.

Доказательства

Доказательство обычной теоремы синусов

Воспользуемся только определением высоты h b {\displaystyle h_{b}} треугольника, опущенной на сторону b , и синуса для двух углов:

h b = a sin ⁡ γ = c sin ⁡ α {\displaystyle h_{b}=a\sin \gamma =c\sin \alpha } . Следовательно, a sin ⁡ α = c sin ⁡ γ {\displaystyle {\frac {a}{\sin \alpha }}={\frac {c}{\sin \gamma }}} , что и требовалось доказать. Повторив те же рассуждения для двух других сторон треугольника, получаем окончательный вариант обычной теоремы синусов.

Доказательство расширенной теоремы синусов

Доказательство

Достаточно доказать, что

a sin ⁡ α = 2 R . {\displaystyle {\frac {a}{\sin \alpha }}=2R.}

Проведем диаметр | B G | {\displaystyle |BG|} для описанной окружности. По свойству углов, вписанных в окружность, угол G C B {\displaystyle GCB} прямой, а угол C G B {\displaystyle CGB} равен либо α {\displaystyle \alpha } , если точки A {\displaystyle A} и G {\displaystyle G} лежат по одну сторону от прямой B C {\displaystyle BC} , либо π − α {\displaystyle \pi -\alpha } в противном случае. Поскольку sin ⁡ (π − α) = sin ⁡ α {\displaystyle \sin(\pi -\alpha)=\sin \alpha } , в обоих случаях получаем

a = 2 R sin ⁡ α {\displaystyle a=2R\sin \alpha } .

Повторив то же рассуждение для двух других сторон треугольника, получаем:

a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R . {\displaystyle {\frac {a}{\sin \alpha }}={\frac {b}{\sin \beta }}={\frac {c}{\sin \gamma }}=2R.}

Вариации и обобщения

В треугольнике против бо́льшего угла лежит большая сторона, против бо́льшей стороны лежит больший угол.

В симплексе V n = n − 1 n V n − 1 i V n − 1 j V n − 2 i , j s i n (A i , j) {\displaystyle V_{n}={\frac {n-1}{n}}{\frac {{V_{n-1}^{i}}{V_{n-1}^{j}}}{V_{n-2}^{i,j}}}{sin({A_{i,j}})}}

Где A i , j {\displaystyle A_{i,j}} - угол между гранями и ; V n − 2 i , j {\displaystyle V_{n-2}^{i,j}} - общая грань V n − 1 i {\displaystyle V_{n-1}^{i}} и V n − 1 j {\displaystyle V_{n-1}^{j}} ; V n {\displaystyle V_{n}} - объем симплекса.

Теорема о площади треугольника

Теорема 1

Площадь треугольника равна половине произведения двух сторон на синус угла между этими сторонами.

Доказательство.

Пусть нам дан произвольный треугольник $ABC$. Обозначим длины сторон этого треугольника как $BC=a$, $AC=b$. Введем декартову систему координат, так, что точка $C=(0,0)$, точка $B$ лежит на правой полуоси $Ox$, а точка $A$ лежит в первой координатной четверти. Проведем высоту $h$ из точки $A$ (рис. 1).

Рисунок 1. Иллюстрация теоремы 1

Высота $h$ равняется ординате точки $A$, следовательно

Теорема синусов

Теорема 2

Стороны треугольника пропорциональны синусам противолежащих углов.

Доказательство.

Пусть нам дан произвольный треугольник $ABC$. Обозначим длины сторон этого треугольника как $BC=a$, $AC=b,$ $AC=c$ (рис. 2).

Рисунок 2.

Докажем, что

По теореме 1, имеем

Приравнивая их попарно, и получим, что

Теорема косинусов

Теорема 3

Квадрат стороны треугольника равен сумме квадратов двух других сторон треугольника без удвоенного произведения этих сторон на косинус угла между этими сторонами.

Доказательство.

Пусть нам дан произвольный треугольник $ABC$. Обозначим длины его сторон как $BC=a$, $AC=b,$ $AB=c$. Введем декартову систему координат, так, что точка $A=(0,0)$, точка $B$ лежит на положительной полуоси $Ox$, а точка $C$ лежит в первой координатной четверти (рис. 3).

Рисунок 3.

Докажем, что

В этой системе координат, получаем, что

Найдем длину стороны $BC$ по формуле расстояния между точками

Пример задачи на использование данных теорем

Пример 1

Доказать, что диаметр описанной окружности произвольного треугольника равен отношению любой стороны треугольника к синусу противолежащего этой стороне угла.

Решение.

Пусть нам дан произвольный треугольник $ABC$. $R$ - радиус описанной окружности. Проведем диаметр $BD$ (Рис. 4).

Первая часть теоремы : стороны произвольного треугольника пропорциональный синусам противоположных углов, то есть:

Вторая часть теоремы : каждая дробь равна диаметру окружности, описанной около данного треугольника, то есть: .

Комментарий репетитора по математике : использование второй части теоремы синусов закладывается чуть ли не в каждой второй конкурсной задаче на окружность. Почему? Дело в том, что равенство позволяет находить радиус окружности имея в наличие только два элемента треугольника. Это очень часто используют составители сильных задач, которые специально так подбирают условие, чтобы никакие другие элементы треугольника (и всего рисунка) не находились бы вообше! «Картинка» при этом будет плавующей. Это обстоятельство сильно усложняет работу на экзамене, ибо не дает возможность действовать в обход заложенному свойству.

Доказательство теоремы синусов:

по учебнику Атанасяна
Докажем, что для любого треугольника со сторонами a, b, c и противолежащими углами A, B и С выполняется равенство: .
Проведем высоту BH из вершины В. Возможны два случая:
1) Точка H лежит на стороне AC (это возможно когда и — острые).
По определению синуса острого угла в прямоугольном треугольнике ABH запишем

Аналогично в треугольнике CBH имеем . Приравнивая выражения для BH друг к другу получим:
2) Пусть H лежит на продолжении стороны AC (например слева от А). Это произойдет, если – тупой. Аналогично по определению синуса острого угла А в треугольнике ABH запишем равенство , но так как синусы смежных углов равны, то заменив в этом равенстве на , получим как и в первом случае. Поэтому независимо от величин углов А и С равенство верное.
После деления обеих его частей на получим . Аналогично доказывается равенство второй пары дробей

Доказательство теоремы синусов по учебнику Погорелова:

Применим формулу площади треугольника для двух углов A и C:


После приравнивания правых частей и сокращения на получим тоже самое равенство , как и в доказательстве первым способом. Из него тем же путем получаем равенство дробей.

Доказательство второй части теоремы синусов:

Опишем около данного треугольника окружность и через В проведем ее диаметр BD. Так как углы D и C опираются на одну дугу, то они равны (следствие из теоремы о вписанных углах). Тогда . Применим в треугольнике ABD определение синуса угла D: Что и требовалось доказать.

Задачи на вторую часть теоремы синусов:
1) В окружность радиуса 15 вписана трапеция. Длины диагонали и высоты трапеции соответственно равны 20 и 6. Найти боковую сторону.
2) Радиус окружность, описанной около трапеции, равен 25, а косинус ее тупого угла равен -0,28 (минус!!!). Диагональ трапеции образует с основанием угол . Найти высоту трапеции.
3) В окружность радиуса 10 вписана трапеция. Длины диагонали и средней линии трапеции соответственно равны 15 и 12. Найти длину боковой стороны трапеции.
4) Олимпиада в Финансовой академии 2009г. Хорды окружности пересекаются в точке Q. Известно, что а радиус окружности равен 4см. Найдите длину хорды PN. Олимпиада в Финансовой академии 2009г.
5) В треугольнике PST . Вокруг точки пересечения его биссектрис и вершин P и T описана окружность с радиусом 8см. Найдите радиус окружности, описанной около треугольника PST (авторская задача).

Детально разобрать теорему синусов и получить необходимую практику ее использования в задачах вам всегда поможет репетитор по математике . Ее плановое школьное изучение происходит в курсе геометрии 9 класса в теме решение треугольников (по всем программам). Если вам нужна подготовка к ЕГЭ по математике для сдачи экзамена не менее чем на 70 баллов — придется тренироваться в решении крепких планиметрических задач с номеров С4. В них теорему синусов часто применяют к вписанным треугольникам учитывая соотношение . Помните об этом!

С уважением, Колпаков Александр Николаевич,
репетитор по математике

Лучшие статьи по теме