Для школьников и родителей
  • Главная
  • Из бумаги
  • Приблизительный уровень радиации в космосе. Космическая радиация и ее опасность в космических полетах. Космическая радиация: правда или миф

Приблизительный уровень радиации в космосе. Космическая радиация и ее опасность в космических полетах. Космическая радиация: правда или миф

Как уже говорилось, едва американцы начали свою космическую программу, их ученый Джеймс Ван Аллен совершил достаточно важное открытие. Первый американский искусственный спутник, запущенный ими на орбиту, был куда меньше советского, но Ван Аллен додумался прикрепить к нему счетчик Гейгера. Таким образом, была официально подтверждена высказанная еще в конце ХIХ в. выдающимся ученым Николой Теслой гипотеза о том, что Землю окружает пояс интенсивной радиации.

Фотография Земли астронавта Уильяма Андерса

во время миссии «Аполлон-8» (архив НАСА)

Тесла, однако, считался большим чудаком, а академической наукой - даже сумасшедшим, поэтому его гипотезы о генерируемом Солнцем гигантском электрическом заряде давно лежали под сукном, а термин «солнечный ветер» не вызывал ничего, кроме улыбок. Но благодаря Ван Аллену теории Теслы были реанимированы. С подачи Ван Аллена и ряда других исследователей было установлено, что радиационные пояса в космосе начинаются у отметки 800 км над поверхностью Земли и простираются до 24 000 км. Поскольку уровень радиации там более или менее постоянен, входящая радиация должна приблизительно равняться исходящей. В противном случае она либо накапливалась бы до тех пор, пока не «запекла» Землю, как в духовке, либо иссякла. По этому поводу Ван Аллен писал: «Радиационные пояса можно сравнить с протекающим сосудом, который постоянно пополняется от Солнца и протекает в атмосферу. Большая порция солнечных частиц переполняет сосуд и выплескивается, особенно в полярных зонах, приводя к полярным сияниям, магнитным бурям и прочим подобным явлениям».

Радиация поясов Ван Аллена зависит от солнечного ветра. Кроме того, они, по-видимому, фокусируют или концентрируют в себе эту радиацию. Но поскольку концентрировать в себе они могут только то, что пришло напрямую от Солнца, то открытым остается еще один вопрос: сколько радиации в остальной части космоса?

Орбиты атмосферных частиц в экзосфере (dic.academic.ru)

У Луны нет поясов Ван Аллена. У нее также нет защитной атмосферы. Она открыта всем солнечным ветрам. Если бы во время лунной экспедиции произошла сильная солнечная вспышка, то колоссальный поток радиации испепелил бы и капсулы, и астронавтов на той части поверхности Луны, где они проводили свой день. Эта радиация не просто опасна - она смертельна!

В 1963 году советские ученые заявили известному британскому астроному Бернарду Ловеллу, что они не знают способа защитить космонавтов от смертельного воздействия космической радиации. Это означало, что даже намного более толстостенные металлические оболочки российских аппаратов не могли справиться с радиацией. Каким же образом тончайший (почти как фольга) металл, используемый в американских капсулах, мог защитить астронавтов? НАСА знало, что это невозможно. Космические обезьяны погибли менее чем через 10 дней после возвращения, но НАСА так и не сообщило нам об истинной причине их гибели.

Обезьяна-астронавт (архив РГАНТ)

Большинство людей, даже сведущих в космосе, и не подозревают о существовании пронизывающей его просторы смертельной радиации. Как ни странно (а может быть, как раз по причинам, о которых можно догадаться), в американской «Иллюстрированной энциклопедии космической технологии» словосочетание «космическая радиация» не встречается ни разу. Да и вообще эту тему американские исследователи (особенно связанные с НАСА) обходят за версту.

Между тем Ловелл после беседы с русскими коллегами, которые отлично знали о космической радиации, отправил имевшуюся у него информацию администратору НАСА Хью Драйдену, но тот проигнорировал ее.

Один из якобы посетивших Луну астронавтов Коллинз в своей книге упоминал о космической радиации только дважды:

«По крайней мере, Луна была далеко за пределами земных поясов Ван Аллена, что предвещало хорошую дозу радиации для тех, кто побывал там, и смертельную - для тех, кто задержался».

«Таким образом, радиационные пояса Ван Аллена, окружающие Землю, и возможность солнечных вспышек требуют понимания и подготовки, чтобы не подвергать экипаж повышенным дозам радиации».

Так что же означает «понимание и подготовка»? Означает ли это, что за пределами поясов Ван Аллена остальной космос свободен от радиации? Или у НАСА была секретная стратегия укрытия от солнечных вспышек после принятия окончательного решения об экспедиции?

НАСА утверждало, что просто может предсказывать солнечные вспышки, и поэтому отправляло на Луну астронавтов тогда, когда вспышек не ожидалось, и радиационная опасность для них была минимальна.

Пока Армстронг и Олдрин выполняли работу в открытом космосе

на поверхности Луны,Майкл Коллинз

ставался на орбите (архив НАСА)

Впрочем, другие специалисты утверждают: «Возможно предсказать только приблизительную дату будущих максимальных излучений и их плотность».

Советский космонавт Леонов все же вышел в 1966 году в открытый космос - правда, в сверхтяжелом свинцовом костюме. Но спустя всего лишь три года американские астронавты прыгали на поверхности Луны, причем отнюдь не в сверхтяжелых скафандрах, а скорее совсем наоборот! Может, за эти годы специалисты из НАСА сумели найти какой-то сверхлегкий материал, надежно защищающий от радиации?

Однако исследователи вдруг выясняют, что по крайней мере «Аполлон-10», «Аполлон-11» и «Аполлон-12» отправились в путь именно в те периоды, когда количество солнечных пятен и соответствующая солнечная активность приближались к максимуму. Общепринятый теоретический максимум 20-го солнечного цикла длился с декабря 1968 по декабрь 1969 гг. В этот период миссии «Аполлон-8», «Аполлон-9», «Аполлон-10», «Аполлон-11» и «Аполлон-12» предположительно вышли за пределы зоны защиты поясов Ван Аллена и вошли в окололунное пространство.

Дальнейшее изучение ежемесячных графиков показало, что единичные солнечные вспышки - явление случайное, происходящее спонтанно на протяжении 11-летнего цикла. Бывает и так, что в «низкий» период цикла случается большое количество вспышек за короткий промежуток времени, а во время «высокого» периода - совсем незначительное количество. Но важно именно то, что очень сильные вспышки могут иметь место в любое время цикла.

В эпоху «Аполлонов» американские астронавты провели в космосе в общей сложности почти 90 дней. Поскольку радиация от непредсказуемых солнечных вспышек долетает до Земли или Луны менее чем за 15 минут, защититься от нее можно было бы только с помощью свинцовых контейнеров. Но если мощности ракеты хватило, чтобы поднять такой лишний вес, то почему надо было выходить в космос в тонюсеньких капсулах (буквально в 0,1 мм алюминия) при давлении в 0,34 атмосфер?

Это притом, что даже тонкий слой защитного покрытия, именуемого «майларом», по утверждениям экипажа «Аполлон-11», оказался столь тяжек, что его пришлось срочно стирать с лунного модуля!

Похоже, в лунные экспедиции НАСА отбирало особенных парней, правда, с поправкой на обстоятельства, отлитых не из стали, а из свинца. Американский исследователь проблемы Ральф Рене не поленился рассчитать, как часто каждая из якобы состоявшихся лунных экспедиций должна была попасть под солнечную активность.

Между прочим, один из авторитетных сотрудников НАСА (заслуженный физик, кстати) Билл Модлин в своей работе «Перспективы межзвездных путешествий» откровенно сообщал: «Солнечные вспышки могут выбрасывать ГэВ протоны в том же энергетическом диапазоне, что и большинство космических частиц, но гораздо более интенсивные. Увеличение их энергии при усиленной радиации представляет особую опасность, поскольку ГэВ протоны проникают сквозь несколько метров материала… Солнечные (или звездные) вспышки с выбросом протонов - это периодически возникающая очень серьезная опасность в межпланетном пространстве, которая обеспечивает дозу радиации в сотни тысяч рентген за несколько часов на расстоянии от Солнца до Земли. Такая доза является смертельной и в миллионы раз превышает допустимую. Смерть может наступить уже после 500 рентген за короткий промежуток времени».

Да, бравые американские парни потом должны были сиять похлеще четвертого чернобыльского энергоблока. «Космические частицы опасны, они исходят со всех сторон и требуют как минимум двух метров плотного экрана вокруг любых живых организмов». А ведь космические капсулы, которые по сей день демонстрирует НАСА, имели чуть более 4 м в диаметре. При толщине стен, рекомендуемой Модлиным, астронавты, даже без всякого оборудования, в них бы не влезли, уж не говоря о том, что и не хватило бы топлива для того, чтобы такие капсулы поднять. Но, очевидно, ни руководство НАСА, ни посланные им на Луну астронавты книжек своего коллеги не читали и, находясь в блаженном неведении, преодолели все тернии по дороге к звездам.

Впрочем, может быть, НАСА и впрямь разработало для них некие сверхнадежные скафандры, используя (понятно, очень засекреченный) сверхлегкий материал, защищающий от радиации? Но почему же его так больше нигде и не использовали, как говорится, в мирных целях? Ну ладно, с Чернобылем СССР они не захотели помогать: все-таки перестройка еще не началась. Но ведь, к примеру, в 1979 году в тех же США на АЭС «Тримайл-Айленд» произошла крупная авария реакторного блока, которая привела к расплавлению активной зоны реактора. Так что же американские ликвидаторы не использовали космические скафандры по столь разрекламированной технологии НАСА стоимостью ни много ни мало в $7 млн, чтобы ликвидировать эту атомную мину замедленного действия на своей территории?..

Орбиту Международной космической станции несколько раз поднимали, и сейчас ее высота составляет более 400 км. Это делалось для того, чтобы увести летающую лабораторию от плотных слоев атмосферы, где молекулы газов еще довольно заметно тормозят полет и станция теряет высоту. Чтобы не корректировать орбиту слишком часто, хорошо бы поднять станцию еще выше, но делать этого нельзя. Примерно в 500 км от Земли начинается нижний (протонный) радиационный пояс. Длительный полет внутри любого из радиационных поясов (а их два) будет гибельным для экипажей.

Космонавт-ликвидатор

Тем не менее нельзя сказать, что на высоте, на которой сейчас летает МКС, проблемы радиационной безопасности нет. Во‑первых, в районе Южной Атлантики существует так называемая Бразильская, или Южно-Атлантическая, магнитная аномалия. Здесь магнитное поле Земли как бы провисает, а с ним ближе к поверхности оказывается нижний радиационный пояс. И МКС его все-таки касается, пролетая в этом районе.

Во-вторых, человеку в космосе угрожает галактическое излучение — несущийся со всех направлений и с огромной скоростью поток заряженных частиц, порожденных взрывами сверхновых или деятельностью пульсаров, квазаров и других аномальных звездных тел. Часть этих частиц задерживается магнитным полем Земли (что является одним из факторов формирования радиационных поясов), другая часть теряет энергию в столкновении с молекулами газов в атмосфере. Что-то долетает и до поверхности Земли, так что небольшой радиоактивный фон присутствует на нашей планете абсолютно везде. В среднем проживающий на Земле человек, не имеющий дела с источниками радиации, ежегодно получает дозу в 1 миллизиверт (мЗв). Космонавт на МКС зарабатывает 0,5−0,7 мЗв. Ежедневно!

Радиационные пояса Земли представляют собой области магнитосферы, в которых накапливаются высокоэнергетичные заряженные частицы. Внутренний пояс состоит преимущественно из протонов, внешний — из электронов. В 2012 году спутником NASA был открыт еще один пояс, который находится между двумя известными.

«Можно привести интересное сопоставление, — говорит заведующий отделом радиационной безопасности космонавтов Института медико-биологических проблем РАН, кандидат физико-математических наук Вячеслав Шуршаков. — Допустимой ежегодной дозой для сотрудника АЭС считаются 20 мЗв — в 20 раз больше, чем получает обычный человек. Для специалистов по ликвидации аварий, этих особым образом подготовленных людей, максимальная годовая доза составляет 200 мЗв. Это уже в 200 раз больше по сравнению с обычной дозой и… практически столько же, сколько получает космонавт, проработавший год на МКС».

В настоящее время медициной установлена максимальная предельная доза, которую в течение жизни человеку превышать нельзя во избежание серьезных проблем со здоровьем. Это 1000 мЗв, или 1 Зв. Таким образом, даже работник АЭС с его нормативами может спокойно трудиться лет пятьдесят, ни о чем не беспокоясь. Космонавт же исчерпает свой лимит всего за пять лет. Но, даже налетав четыре года и набрав свои законные 800 мЗв, он уже вряд ли будет допущен в новый полет годичной продолжительности, потому что появится угроза превышения лимита.


«Еще одним фактором радиационной опасности в космосе, — объясняет Вячеслав Шуршаков, — является активность Солнца, особенно так называемые протонные выбросы. В момент выброса за короткое время космонавт на МКС может получить дополнительно до 30 мЗв. Хорошо, что солнечные протонные события происходят редко — 1−2 раза за 11-летний цикл солнечной активности. Плохо, что эти процессы возникают стохастически, в случайном порядке, и плохо поддаются прогнозированию. Я не помню такого, чтобы мы были бы заранее предупреждены нашей наукой о грядущем выбросе. Обычно дело обстоит по‑другому. Дозиметры на МКС вдруг показывают повышение фона, мы звоним специалистам по Солнцу и получаем подтверждение: да, наблюдается аномальная активность нашего светила. Именно из-за таких внезапно возникающих солнечных протонных событий мы никогда точно не знаем, какую именно дозу привезет с собой космонавт из полета».

Частицы, сводящие с ума

Радиационные проблемы у экипажей, отправляющихся на Марс, начнутся еще у Земли. Корабль массой 100 или более тонн придется долго разгонять по околоземной орбите, и часть этой траектории пройдет внутри радиационных поясов. Это уже не часы, а дни и недели. Дальше — выход за пределы магнитосферы и галактическое излучение в его первозданной форме, много тяжелых заряженных частиц, воздействие которых под «зонтиком» магнитного поля Земли ощущается мало.


«Проблема в том, — говорит Вячеслав Шуршаков, — что влияние частиц на критические органы человеческого организма (например, нервную систему) сегодня мало изучено. Возможно, радиация станет причиной потери памяти у космонавта, вызовет ненормальные поведенческие реакции, агрессию. И очень вероятно, что эти эффекты не будут привязаны к конкретной дозе. Пока не накоплено достаточно данных по существованию живых организмов за пределами магнитного поля Земли, отправляться в длительные космические экспедиции очень рискованно».

Когда специалисты по радиационной безопасности предлагают конструкторам космических аппаратов усилить биозащиту, те отвечают, казалось бы, вполне рациональным вопросом: «А в чем проблема? Разве кто-то из космонавтов умер от лучевой болезни?» К сожалению, полученные на борту даже не звездолетов будущего, а привычной нам МКС дозы радиации хоть и вписываются в нормативы, но вовсе не безобидны. Советские космонавты почему-то никогда не жаловались на зрение — видимо, побаиваясь за свою карьеру, но американские данные четко показывают, что космическая радиация повышает риск катаракты, помутнения хрусталика. Исследования крови космонавтов демонстрируют увеличение хромосомных аберраций в лимфоцитах после каждого космического полета, что в медицине считается онкомаркером. В целом сделан вывод о том, что получение в течение жизни допустимой дозы в 1 Зв в среднем укорачивает жизнь на три года.

Лунные риски

Одним из «сильных» доводов сторонников «лунного заговора» считается утверждение о том, что пересечение радиационных поясов и нахождение на Луне, где нет магнитного поля, вызвало бы неминуемую гибель астронавтов от лучевой болезни. Американским астронавтам действительно приходилось пересекать радиационные пояса Земли — протонный и электронный. Но это происходило в течение всего лишь нескольких часов, и дозы, полученные экипажами «Аполлона» в ходе миссий, оказались существенными, но сопоставимыми с теми, что получают старожилы МКС. «Конечно, американцам повезло, — говорит Вячеслав Шуршаков, — ведь за время их полетов не произошло ни одного солнечного протонного события. Случись такое, астронавты получили бы сублетальные дозы — уже не 30 мЗв, а 3 Зв.

Намочите полотенца!

«Мы, специалисты в области радиационной безопасности, — говорит Вячеслав Шуршаков, — настаиваем на том, чтобы защита экипажей была усилена. Например, на МКС наиболее уязвимыми являются каюты космонавтов, где они отдыхают. Там нет никакой дополнительной массы, и от открытого космоса человека отделяет лишь металлическая стенка толщиной в несколько миллиметров. Если приводить этот барьер к принятому в радиологии водному эквиваленту, это всего лишь 1 см воды. Для сравнения: земная атмосфера, под которой мы укрываемся от излучения, эквивалентна 10 м воды. Недавно мы предложили защитить каюты космонавтов дополнительным слоем из пропитанных водой полотенец и салфеток, что намного бы снизило действие радиации. Разрабатываются медикаментозные средства для защиты от излучения — правда, на МКС они пока не используются. Возможно, в будущем методами медицины и генной инженерии мы сможем усовершенствовать тело человека таким образом, чтобы его критические органы были более устойчивыми к факторам радиации. Но в любом случае без пристального внимания науки к этой проблеме о дальних космических полетах можно забыть».

07.12.2016

Марсоход Curiosity имеет на борту прибор RAD для определения интенсивности радиоактивного облучения. В ходе своего полета к Марсу Curiosity производил замеры радиационного фона, а сегодня об этих результатах рассказали ученые, которые работают с NASA. Поскольку марсоход летел в капсуле, а датчик радиации располагался внутри, то эти замеры практически соответствуют тому радиационному фону, который будет присутствовать в пилотируемом космическом корабле.

Прибор RAD состоит из трех кремниевых твердотельных пластин, выступающих в качестве детектора. Дополнительно он имеет кристалл йодида цезия, который используется в качестве сцинтилятора. RAD установлен так, чтобы во время посадки смотреть в зенит и захватывать поле в 65 градусов.

Фактически это радиационный телескоп, который фиксирует ионизирующие излучения и заряженные частицы в широком диапазоне.

Эквивалентная доза поглощенного радиационного облучения в 2 раза превосходит дозу МКС.

Шестимесячный полет к Марсу примерно равносилен 1 году проведенному на околоземной орбите. Учитывая, что общая длительность экспедиции должна составить около 500 суток, перспектива открывается не оптимистичная.

Для человека накопленная радиация в 1 Зиверт повышает риск раковых заболеваний на 5%. NASA позволяет своим астронавтам за свою карьеру, набирать не более 3% риска или 0,6 Зиверта.

Длительность жизни космонавтов ниже, чем средняя в их странах. Не менее четверти смертности приходится на онкологию.

Из 112 летавших российских космонавтов 28 уже нет с нами. Пять человек погибли: Юрий Гагарин - на истребителе, Владимир Комаров, Георгий Добровольский, Владислав Волков и Виктор Пацаев - при возвращении с орбиты на Землю. Василий Лазарев умер от отравления некачественным спиртом.

Из 22 остальных покорителей звездного океана для девяти причиной смерти стала онкология. От рака скончались Анатолий Левченко (47 лет), Юрий Артюхин (68), Лев Демин (72), Владимир Васютин (50), Геннадий Стрекалов (64), Геннадий Сарафанов (63), Константин Феоктистов (83), Виталий Севастьянов (75). Официальная причина смерти еще одного космонавта, умершего от рака, не раскрывается. Для полетов за пределы Земли отбирают самых здоровых, самых крепких.

Итак, девять умерших от рака из 22 космонавтов составляют 40,9%. Теперь обратимся к аналогичной статистике в целом по стране. В прошлом году покинули сей мир 1 млн 768 тысяч 500 россиян (данные Росстата). При этом от внешних причин (транспортных ЧП, отравлений алкоголем, самоубийств, убийств) умерли 173,2 тысячи. Остается 1 млн 595 тысяч 300. Скольких граждан загубила онкология? Ответ: 265,1 тысячи человек. Или 16,6%. Сравним: 40,9 и 16,6%. Выходит, обычные граждане от рака умирают в 2,5 раза реже, чем космонавты.

По отряду астронавтов США аналогичных сведений нет. Но даже отрывочные данные свидетельствуют: онкология косит и американских звездоплавателей. Вот неполный список жертв страшной болезни: Джон Свайгерт-младший - рак костного мозга, Дональд Слейтон - рак мозга, Чарлз Вич - рак мозга, Дэвид Уолкер - рак, Алан Шепард - лейкемия, Джордж Лоу - рак толстой кишки, Рональд Пэриз - опухоль головного мозга.

За один полет на орбиту Земли каждый член экипажа получает такое облучение, как если бы 150–400 раз побывал на обследовании в рентгеновском кабинете.

С учетом того, что на МКС ежедневная доза составляет до 1 мЗв (годовая допустимая доза для человека на земле), то предельный срок пребывания астронавтов на орбите ограничивается примерно 600 сутками за всю карьеру.

На самом Марсе радиация должна быть примерно в два раза ниже, чем в космосе, из-за атмосферы и пылевой взвеси в ней т. е. соответствовать уровню МКС, но точных показателей еще не публиковали. Интересны будут показатели RAD в дни пылевых бурь - узнаем насколько марсианская пыль является хорошим радиационным экраном.

Сейчас рекорд пребывания на околоземной орбите принадлежит 55-летнему Сергею Крикалеву - на его счету 803 суток. Но он набрал их с перерывами - всего он совершил 6 полетов с 1988 по 2005 год.

Радиация в космосе возникает в основном из двух источников: от Солнца - во время вспышек и коронарных выбросов, и от космических лучей, которые возникают во время взрывов сверхновых или других высокоэнергетических событий в нашей и других галактиках.

На иллюстрации: взаимодействие солнечного «ветра» и магнитосферы Земли.

Космические лучи составляют основную долю радиации в межпланетном путешествии. На них приходится доля излучения в 1,8 мЗв в сутки. Лишь три процента облучения накоплено Curiosity от Солнца. Это связано еще и с тем, что полет проходил в сравнительно спокойное время. Вспышки повышают суммарную дозу, и она приближается к 2 мЗв в сутки.

Пики приходятся на солнечные вспышки.

Нынешние технические средства более эффективны против солнечной радиации, которая имеет невысокую энергию. Например, можно оборудовать защитную капсулу, где космонавты смогут скрываться во время солнечных вспышек. Однако, от межзвездных космических лучей не защитят даже 30 см алюминиевые стены. Свинцовые, вероятно, помогли бы лучше, но это значительно повысит массу корабля, а значит затраты на его выведение и разгон.

Возможно, придется собирать межпланетный космический корабль на орбите вокруг Земли - навешивать тяжелые свинцовые пластины для защиты от радиации. Или использовать для сборки Луну, где вес космолета будет ниже.

Наиболее эффективным средством минимизации облучения должны стать новые типы двигателей, которые существенно сократят время полета до Марса и обратно. NASA сейчас работает над солнечным электрореактивным двигателем и ядерным тепловым. Первый может в теории разогнаться до 20 раз быстрее современных химических двигателей, но разгон будет очень долгим из-за малой тяги. Аппарат с таким двигателем предполагается направить для буксировки астероида, который NASA хочет захватить и перевести на окололунную орбиту для последующего посещения астронавтами.

Наиболее перспективные и обнадеживающие разработки по электрореактивным двигателям ведутся по проекту VASIMR. Но для путешествия к Марсу солнечных панелей будет недостаточно - понадобится реактор.

Ядерный тепловой двигатель развивает удельный импульс примерно втрое выше современных типов ракет. Суть его проста: реактор нагревает рабочий газ (предполагается водород) до высоких температур без использования окислителя, который требуется химическим ракетам. При этом предел температуры нагрева определяется только материалом из которого изготовлен сам двигатель.

Но такая простота вызывает и сложности - тягой очень сложно управлять. NASA пытается решить эту проблему, но не считает разработку ЯРД приоритетной работой.

Применение ядерного реактора еще перспективно тем, что часть энергии можно было бы пустить на генерацию электромагнитного поля, которое бы дополнительно защищало пилотов и от космической радиации, и от излучения собственного реактора. Эта же технология сделала бы рентабельной добычу воды на Луне или астероидах, то есть дополнительно стимулировала коммерческое применение космоса.

Хотя сейчас это не более чем теоретические рассуждения, не исключено, что именно такая схема станет ключом к новому уровню освоения Солнечной системы.

Дополнительные требования к космическим и военными микросхемам.

В первую очередь - повышенные требования к надежности (как самого кристалла, так и корпуса), устойчивости к вибрации и перегрузкам, влажности, температурный диапазон - существенно шире, т. к. военная техника и в -40С должна работать, и при нагреве до 100С.

Затем - стойкость к поражающим факторам ядерного взрыва - ЭМИ, большой мгновенной дозе гамма/нейтронного излучения. Нормальная работа в момент взрыва может быть невозможна, но по крайней мере прибор не должен необратимо выйти из строя.

И наконец - если микросхема для космоса - стабильность параметров по мере медленного набора суммарной дозы облучения и выживание после встречи с тяжелым заряженным частицами космической радиации.

Как же влияет радиация на микросхемы?

В «штуках частиц» космическое излучение состоит на 90% из протонов (т.е. ионов dодорода), на 7% из ядер гелия (альфа-частиц), ~1% более тяжелые атомы и ~1% электроны. Ну и звезды (включая Cолнце), ядра галактик, Млечный путь - обильно освещают все не только видимым светом, но и рентгеновским и гамма излучением. Во время вспышек на солнце - радиация от солнца увеличивается в 1000-1000000 раз, что может быть серьёзной проблемой (как для людей будущего, так и нынешних космических аппаратов за пределами магнитосферы земли).

Нейтронов в космическом излучении нет по очевидной причине - свободные нейтроны имеют период полураспада 611 секунд, и превращаются в протоны. Даже от солнца нейтрону не долететь, разве что с совсем уж релятивистской скоростью. Небольшое количество нейтронов прилетает с земли, но это мелочи.

Вокруг земли есть 2 пояса заряженных частиц - так называемые радиационные : на высоте ~4000 км из протонов, и на высоте ~17000 км из электронов. Частицы там движутся по замкнутым орбитам, захваченные магнитным полем земли. Также есть бразильская магнитная аномалия - где внутренний радиационный пояс ближе подходит к земле, до высоты 200 км.

Электроны, гамма и рентгеновское излучение.

Когда гамма и рентгеновское излучение (в том числе вторичное, полученное из-за столкновения электронов с корпусом аппарата) проходит через микросхему - в подзатворном диэлектрике транзисторов начинает постепенно накапливаться заряд, и соответственно начинают медленно изменятся параметры транзисторов - пороговое напряжение транзисторов и ток утечки. Обычная гражданская цифровая микросхема уже после 5000 рад может перестать нормально работать (впрочем, человек может перестать работать уже после 500-1000 рад).

Помимо этого, гамма и рентгеновское излучение заставляет все pn переходы внутри микросхемы работать как маленькие «солнечные батареи» - и если в космосе обычно радиация недостаточна, чтобы это сильно повлияло на работу микросхемы, во время ядерного взрыва потока гамма и рентгеновского излучения уже может быть достаточно, чтобы нарушить работу микросхемы за счет фотоэффекта.

На низкой орбите 300-500км (там где и люди летают) годовая доза может быть 100 рад и менее, соответственно даже за 10 лет набранная доза будет переносима гражданскими микросхемами. А вот на высоких орбитах >1000km годовая доза может быть 10000-20000 рад, и обычные микросхемы наберут смертельную дозу за считанные месяцы.

Тяжелые заряженные частицы (ТЗЧ) - протоны, альфа-частицы и ионы больших энергий

Это самая большая проблема космической электроники - ТЗЧ имеют такую высокую энергию, что «пробивают» микросхему насквозь (вместе с корпусом спутника), и оставляют за собой «шлейф» заряда. В лучшем случае это может привести к программной ошибке (0 стать 1 или наоборот - single-event upset, SEU), в худшем - привести к тиристорному защелкиванию (single-event latchup, SEL). У защелкнутого чипа питание закорачивается с землей, ток может идти очень большой, и привести к сгоранию микросхемы. Если питание успеть отключить и подключить до сгорания - то все будет работать как обычно.

Возможно именно это было с Фобос-Грунтом - по официальной версии нерадиационностойкие импортные микросхемы памяти дали сбой уже на втором витке, а это возможно только из-за ТЗЧ (по суммарной набранной дозе излучения на низкой орбите гражданский чип мог бы еще долго работать).

Именно защелкивание ограничивает использование обычных наземных микросхем в космосе со всякими программными хитростями для увеличения надежности.

Что будет, если защитить космический аппарат свинцом?

С галактическими космическими лучами к нам иногда прилетают частицы с энергией 3*1020 eV, т.е. 300000000 TeV. В человеко-понятных единицах, это около 50Дж, т.е. в одной элементарной частице энергия как у пули мелкокалиберного спортивного пистолета.

Когда такая частица сталкивается например с атомом свинца радиационной защиты - она просто разрывает его в клочья. Осколки также будут иметь гигантскую энергию, и также будут разрывать в клочья все на своём пути. В конечном итоге - чем толще защита из тяжелых элементов - тем больше осколков и вторичной радиации мы получим. Свинцом можно сильно ослабить только относительно мягкую радиацию земных ядерных реакторов.

Аналогичным эффектом обладает и гамма-излучение высоких энергий - оно также способно разрывать тяжелые атомы в клочья за счет фотоядерной реакции.

Происходящие процессы можно рассмотреть на примере рентгеновской трубки.


Электроны от катода летят в сторону анода из тяжелого металла, и при столкновении с ним - генерируется рентгеновское излучение за счет тормозного излучения.

Когда электрон космического излучения прилетит к нашему кораблю - то наша радиационная защита и превратится в естественную рентгеновскую трубку, рядом с нашими нежными микросхемами и еще более нежными живыми организмами.

Из-за всех этих проблем радиационную защиту из тяжелых элементов, как на земле - в космосе не используют. Используют защиту большей частью состоящую из алюминия, водорода (из различных полиэтиленов и проч), т. к. его разбить можно только на субатомные частицы - а это намного сложнее, и такая защита генерирует меньше вторичной радиации.

Но в любом случае, от ТЗЧ защиты нет, более того - чем больше защиты - тем больше вторичной радиации от высокоэнергетических частиц, оптимальная толщина получается порядка 2-3мм алюминия. Самое сложное что есть - это комбинация защиты из водорода, и чуть более тяжелых элементов (т.н. Graded-Z) - но это не сильно лучше чисто «водородной» защиты. В целом, космическую радиацию можно ослабить примерно в 10 раз, и на этом все.

Оригинал взят у sokolov9686 в Так были ли американцы на Луне?...

Выше 24 000 км над Землей радиация убивает все живое

Как уже говорилось, едва американцы начали свою космическую программу, их ученый Джеймс Ван Аллен совершил достаточно важное открытие. Первый американский искусственный спутник, запущенный ими на орбиту, был куда меньше советского, но Ван Аллен додумался прикрепить к нему счетчик Гейгера. Таким образом, была официально подтверждена высказанная еще в конце ХIХ в. выдающимся ученым Николой Теслой гипотеза о том, что Землю окружает пояс интенсивной радиации.

Фотография Земли астронавта Уильяма Андерса во время миссии «Аполлон-8» (архив НАСА)


Тесла, однако, считался большим чудаком, а академической наукой - даже сумасшедшим, поэтому его гипотезы о генерируемом Солнцем гигантском электрическом заряде давно лежали под сукном, а термин «солнечный ветер» не вызывал ничего, кроме улыбок. Но благодаря Ван Аллену теории Теслы были реанимированы. С подачи Ван Аллена и ряда других исследователей было установлено, что радиационные пояса в космосе начинаются у отметки 800 км над поверхностью Земли и простираются до 24 000 км. Поскольку уровень радиации там более или менее постоянен, входящая радиация должна приблизительно равняться исходящей. В противном случае она либо накапливалась бы до тех пор, пока не «запекла» Землю, как в духовке, либо иссякла. По этому поводу Ван Аллен писал:

«Радиационные пояса можно сравнить с протекающим сосудом, который постоянно пополняется от Солнца и протекает в атмосферу. Большая порция солнечных частиц переполняет сосуд и выплескивается, особенно в полярных зонах, приводя к полярным сияниям, магнитным бурям и прочим подобным явлениям».

Радиация поясов Ван Аллена зависит от солнечного ветра. Кроме того, они, по-видимому, фокусируют или концентрируют в себе эту радиацию. Но поскольку концентрировать в себе они могут только то, что пришло напрямую от Солнца, то открытым остается еще один вопрос: сколько радиации в остальной части космоса?

NASA | Гелиофизика | Спутник открыл новый пояс радиации!


про кольца Ван Аллена 28.30 минута радиация убивает все


Куча музеев в европе, где выставлен реголит в свободном для просмотра доступе довольно большими кусками. Не верите, адреса музеев есть, легко проверить.

Вот например камень в Тулузском Cité de l"Espace:

Оригинал взят у toomth в Почему НАСА прячет «лунный грунт» от всего мира?

Считается, что американцы привезли с Луны 378 кг лунного грунта и камней. Во всяком случае, об этом заявляет НАСА. Это почти четыре центнера. Ясно, что доставить такое количество грунта могли только астронавты: никаким космическим станциям это не под силу.

Камни сфотографированы, переписаны и являются постоянными статистами «лунных» фильмов НАСА. Во многих таких фильмах в роли эксперта и комментатора выступает астронавт-геолог «Аполлона-17», доктор Хариссон Шмидт, якобы лично собравший на Луне много таких камней


Логично ожидать, что при таком лунном богатстве Америка будет им потрясать, всячески демонстрировать и уж кому-кому, а своему главному сопернику отвалит от щедрот килограммов 30-50. Нате, мол, исследуйте, убеждайтесь в наших успехах... Но с этим-то как раз почему-то не получается. Грунта нам дали мало. Зато «свои» (опять же, по данным НАСА) получили 45 кг лунного грунта и камней.

Правда, некоторые особо въедливые исследователи провели подсчет по соответствующим публикациям научных центров и не смогли обнаружить убедительных свидетельств того, что эти 45 кг дошли до лабораторий даже западных ученых. Более того, по ним получается, что в настоящее время в мире из лаборатории в лабораторию кочует не более 100 г американского лунного грунта, так что обычно исследователь получал полграмма горной породы.

Т. е. НАСА относится к лунному грунту, как скупой рыцарь к золоту: хранит заветные центнеры в своих подвалах в надежно запертых сундуках, выдавая исследователям лишь жалкие граммы. Не избежал этой участи и СССР.

В нашей стране в то время головной научной организацией по всем исследованиям лунного грунта являлся Институт геохимии АН СССР (ныне - ГЕОХИ РАН). Заведующий отделом метеоритики этого института доктор М.А. Назаров сообщает: «Американцами было передано в СССР 29,4 грамма (!) лунного реголита (проще говоря, лунной пыли) из всех экспедиций «Аполлон», а из нашей коллекции образцов «Луны-16, 20 и 24» было выдано за рубеж 30,2 г». Фактически американцы обменялись с нами лунным прахом, который может доставить любая автоматическая станция, хотя космонавты должны бы были привезти увесистые булыжники, и интереснее всего посмотреть на них.

Что НАСА собирается делать с остальным лунным «добром»? О, это - «песня».

«В США принято решение сохранить главную массу доставленных образцов в полной неприкосновенности до тех пор, пока не будут разработаны новые, более совершенные способы их изучения», - пишут компетентные советские авторы, из-под пера которых вышла не одна книга по лунному грунту.
«Необходимо расходовать минимальное количество материала, оставив нетронутой и незагрязненной бóльшую часть каждого отдельного образца для изучения будущими поколениями ученых», - разъясняет позицию НАСА американский специалист Дж. А. Вуд.

Очевидно, американский специалист полагает, что на Луну уже не полетит никто и никогда - ни сейчас, ни в будущем. А посему нужно беречь центнеры лунного грунта пуще глаза. Одновременно унижены современные ученые: они своими приборами могут рассмотреть каждый отдельный атом в веществе, а им отказано в доверии - не доросли. Или рылом не вышли. Такая настойчивая забота НАСА о будущих ученых более похожа на то, что это - удобный предлог, чтобы скрыть неутешительный факт: в ее кладовых нет ни лунных камней, ни центнеров лунного грунта.

Еще одна странность: после завершения «лунных» полетов НАСА вдруг стало испытывать острую нехватку денег на их исследование.

Вот что пишет по состоянию на 1974 год один из американских исследователей: «Значительная часть образцов будет храниться в качестве резерва в центре космических полетов в Хьюстоне. Сокращение ассигнований уменьшит число исследователей и замедлит темпы исследований».

Потратив $25 млрд на то, чтобы доставить лунные образцы, НАСА вдруг обнаружило, что денег на их исследование не осталось...

Интересна и история с обменом советского и американского грунта. Вот сообщение от 14 апреля 1972 года главного официального издания советского периода - газеты «Правда»:

«13 апреля Президиум Академии наук СССР посетили представители НАСА. Состоялась передача образцов лунного грунта из числа доставленных на Землю советской автоматической станцией «Луна-20». Одновременно советским ученым был передан образец лунного грунта, полученного экипажем американского корабля «Аполлон-15». Обмен совершен в соответствии с соглашением между Академией наук СССР и НАСА, подписанным в январе 1971 года».

Теперь нужно пройтись по срокам.

Июль 1969 г. Астронавты «Аполлона-11» якобы привозят 20 кг лунного грунта. СССР из этого количества не дают ничего. У СССР к этому моменту лунного грунта еще нет.

Сентябрь 1970 г. Наша станция «Луна-16» доставляет на Землю лунный грунт, и отныне советские ученым есть что предложить в обмен. Это ставит НАСА в трудное положение. Но НАСА рассчитывает, что в начале 1971 года оно сможет автоматически доставить на Землю свой лунный грунт, и в расчете на это в январе 1971 г. соглашение об обмене уже заключено. Но самого обмена не происходит еще 10 месяцев. Видимо, у США что-то не заладилось с автоматической доставкой. И американцы начинают тянуть резину.

Июль 1971 г. В порядке доброй воли СССР в одностороннем порядке передает США 3 г грунта от «Луны-16», но от США не получает ничего, хотя соглашение об обмене подписано уже полгода назад, а в кладовых НАСА якобы уже лежит 96 кг лунного грунта (от «Аполлона-11», «Аполлона-12» и «Аполлона-14»). Проходит еще 9 месяцев.

Апрель 1972 г. Наконец-то НАСА передает образец лунного грунта. Он якобы доставлен экипажем американского корабля «Аполлон-15», хотя со времени полета «Аполлона-15» (июль 1971 г.) прошло уже 8 месяцев. В кладовых НАСА к этому времени якобы уже лежат 173 кг лунных камней (от «Аполлона-11», «Аполлона-12», «Аполлона-14» и «Аполлона-15»).

Советские ученые получают от этих богатств некий образец, параметры которого в газете «Правда» не сообщаются. Но благодаря доктору М.А. Назарову мы знаем, что этот образец состоял из реголита и не превышал 29 г по массе.

Очень похоже на то, что примерно до июля 1972 года у США вообще не было настоящего лунного грунта. Видимо, где-то в первой половине 1972 года у американцев появились первые граммы настоящего лунного грунта, который был доставлен с Луны автоматическим способом. Вот только тогда у НАСА и проявилась готовность к совершению обмена.

А в последние годы лунный грунт у американцев (точнее, то, что они выдают за лунный грунт) и вовсе начал исчезать. Летом 2002 года огромное количество образцов лунного вещества - сейф весом почти 3 центнера - исчезло из запасников музея Американского космического центра НАСА им. Джонсона в Хьюстоне.

Вы никогда не пробовали украсть 300-килограммовый сейф с территории космического центра? И не пробуйте: слишком тяжелая и опасная работа. А вот воришкам, на след которых полиция вышла на диво быстро, это легко удалось. Тиффани Фоулер и Тэд Робертс, работавшие в здании в период пропажи, были арестованы специальными агентами ФБР и НАСА в одном из ресторанов штата Флорида. Впоследствии в Хьюстоне был взят под стражу и третий подельщик, Шэ Саур, а затем - и четвертый участник преступления, Гордон Мак Вотер, способствовавший транспортировке краденого. Воры намеревались сбыть бесценные свидетельства лунной миссии НАСА по цене $1000-5000 за грамм через сайт минералогического клуба в Антверпене (Голландия). Стоимость украденного, по информации из-за океана, составляла более $1 млн.

Через несколько лет - новое несчастье. В США в районе Вирджиния-Бич из автомобиля неизвестными злоумышленниками были выкрадены две небольших запаянных пластиковых коробки в форме диска с образцами метеоритного и лунного вещества, судя по имевшейся на них маркировке. Образцы такого рода, сообщает Space, передаются НАСА специальным инструкторам «для учебных целей». Прежде чем получить подобные образцы, преподаватели проходят специальный инструктаж, в ходе которого их обучают правильно обращаться с этим национальным достоянием США. А «национальное достояние», оказывается, так просто украсть... Хотя это похоже не на кражу, а на инсценировку кражи в целях избавления от улик: нет грунта - нет «неудобных» вопросов.

Такое понятие как солнечная радиация стало известным довольно-таки давно. Как показали многочисленные исследования, оно далеко не всегда виновно в повышении уровня ионизации воздуха.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Космическая радиация: правда или миф?

Космические лучи — это излучение, которое появляется при взрыве сверхновой звезды, а также как следствие термоядерных реакций на Солнце. Разная природа происхождения лучей влияет и на их основные характеристики. Космические лучи, которые проникают из космоса вне нашей Солнечной системы условно можно поделить на два вида — галактические и межгалактические. Последний вид остается наименее изученным, так как концентрация первичной радиации в нем минимальна. То есть особого значения межгалактическое излучение не имеет, так как полностью нейтрализуется в нашей атмосфере.

К сожалению, так же немного можно сказать и о лучах, пришедших к нам из нашей галактики под названием Млечный Путь. Несмотря на то, что ее размер превышает 10000 световых лет, любые изменения радиационного поля в одном конце галактики немедленно аукнутся в другом.

Опасность радиации из космоса

Прямая космическая радиация губительна для живого организма, поэтому ее влияние крайне опасно для человека. К счастью, наша Земля надежно защищена от этих космических пришельцев плотным куполом из атмосферы. Он служит прекрасной защитой всего живого на земле, так как нейтрализует прямую космическую радиацию. Но не полностью. При столкновении с воздухом она распадается на более мелкие частички ионизирующего излучения, каждая из которых вступает в индивидуальную реакцию с его атомами. Таким образом, высокоэнергетическое излучение из космоса ослабевает, и образует вторичное излучение. При этом оно теряет свою смертоносность — уровень радиации становится приблизительно таким же, как и в рентгеновских лучах. Но пугаться не стоит — это излучение полностью исчезает во время прохождения через атмосферу Земли. Какими бы ни были источники космических лучей, и какую мощь они бы не имели — опасность для человека, который находится на поверхности нашей планеты, минимальна. Ощутимый вред она может принести только космонавтам. Они подвержены прямому космическому излучению, так как не имеют естественной защиты в виде атмосферы.

Энергия, выделяемая космическими лучами, в первую очередь влияет на магнитное поле Земли. Заряженные ионизирующие частицы буквально бомбардируют его и становятся причиной самого красивого атмосферного явления — . Но это еще не все — радиоактивные частицы, в виду своей природы, способны вызывать сбои в работе различной электроники. И если в прошлом веке это не вызывало особого дискомфорта, то в наше время это весьма серьезная проблема, так как на электрике завязаны самые важные аспекты современной жизни.

Люди также восприимчивы к этим гостям из космоса, хотя механизм воздействия космических лучей весьма специфичен. Ионизированные частички (то есть вторичное излучение) воздействует на магнитное поле Земли, вызывая тем самым бури в атмосфере. Всем известно, что организм человека состоит из воды, которая очень восприимчива к магнитным колебаниям. Таким образом, космическое излучение влияет на сердечнососудистую систему, и становится причиной плохого самочувствия у метеозависимых людей. Это, конечно же, неприятно, но отнюдь не смертельно.

Что защищает Землю от солнечной радиации?

Солнце — это звезда, в недрах которой постоянно проходят разнообразные термоядерные реакции, которые сопровождаются сильными энергетическими выбросами. Эти заряженные частицы называются солнечный ветер и достаточно сильно влияют на нашу Землю, вернее на ее магнитное поле. Именно с ним взаимодействуют ионизированные частицы, которые составляют основу солнечного ветра.

Согласно новейшим исследованиям ученых со всего мира, особую роль в нейтрализации солнечного ветра отыгрывает плазменная оболочка нашей планеты. Происходит это следующим образом: солнечное излучение сталкивается с магнитным полем Земли и рассеивается. Когда его слишком много, удар на себя принимает плазменная оболочка, происходит процесс взаимодействия, схожий с коротким замыканием. Следствием такой борьбы могут стать трещины в защитном щите. Но природа и это предусмотрела — потоки холодной плазмы поднимаются с поверхности Земли и устремляются в места ослабленной защитой. Таким образом, магнитное поле нашей планеты отражает удар из космоса.

Но стоит констатировать тот факт, что солнечная радиация, в отличие от космической, все же попадает на Землю. При этом не стоит переживать понапрасну, ведь по сути это энергия Солнца, которая должна попадать на поверхность нашей планеты в рассеянном состоянии. Таким образом, она нагревает поверхность Земли и помогает развивать жизнь на ней. Так, стоит четко разграничивать разные виды радиации, ведь некоторые из них не только не имеют негативного воздействия, но и необходимы для нормального функционирования живых организмов.

Однако на Земле далеко не все вещества одинаково восприимчивы к солнечной радиации. Существуют поверхности, которые больше других поглощают ее. Это, как правило, подстилающие поверхности с минимальным уровнем альбедо (способность к отражению солнечной радиации) — это земля, лес, песок.

Таким образом, температура на поверхности Земли, а также продолжительность светового дня напрямую зависит от того, какое количество солнечной радиации поглощает атмосфера. Хочется сказать, что основной объем энергии все же доходит до поверхности нашей планеты, ведь воздушная оболочка Земли служит преградой лишь для лучей инфракрасного спектра. А вот УФ лучи нейтрализуются лишь частично, что приводит к некоторым проблемам с кожными покровами у людей и животных.

Влияние солнечной радиации на организм человека

При воздействии лучей инфракрасного спектра солнечной радиации однозначно проявляется тепловой эффект. Он способствует расширению сосудов, стимуляции работы сердечнососудистой системы, активизирует кожное дыхание. Как следствие происходит расслабление основных систем организма, усиливается выработка эндорфинов (гормонов счастья), обладающих болеутоляющим и противовоспалительным эффектом. Тепло также влияет на обменные процессы, активизируя метаболизм.

Световое излучение солнечной радиации оказывает значительное фотохимическое воздействие, которое активизирует важные процессы в тканях. Этот вид солнечной радиации позволяет человеку использовать одну из самых важных систем осязания внешнего мира — зрение. Именно этим квантам мы должны быть благодарны за то, что видим все в красках.

Важные факторы влияния

Солнечное излучение инфракрасного спектра также стимулирует мозговую деятельность и отвечает за психическое здоровье человека. Немаловажно и то, что именно этот вид солнечной энергии влияет на наши биологические ритмы, то есть на фазы активной деятельности и сна.

Без световых частиц многие жизненно важные процессы оказались бы под угрозой, что чревато развитием различных заболеваний, в том числе бессонницы и депрессии. Так же при минимальном контакте со световой солнечной радиацией существенно снижается трудоспособность человека, а также замедляется большинство процессов в организме.

УФ-излучение достаточно полезно для нашего организма, так как оно запускает также иммунологические процессы, то есть стимулирует защитные силы организма. Также оно нужно для выработки порфирита — аналога растительного хлорофилла в нашей коже. Однако избыток УФ-лучей может привести к ожогам, поэтому очень важно знать, как правильно защититься от этого в период максимальной солнечной активности.

Как видите, польза солнечной радиации для нашего организма несомненна. Многие очень переживают, впитывает ли еда этот вид радиации и не опасно ли есть зараженные продукты. Повторюсь — солнечная энергия не имеет ничего общего с космическим или атомным излучением, а значит, и опасаться ее не стоит. Да и было бы бессмысленно избегать ее... Способа того, как спастись от Солнца никто пока не искал.

Лучшие статьи по теме