Для школьников и родителей
  • Главная
  • Праздники 
  • Урок первообразная и интеграл. Первообразная. Неопределённый интеграл. I. Организационный момент

Урок первообразная и интеграл. Первообразная. Неопределённый интеграл. I. Организационный момент

Методическая разработка урока алгебры по теме: «Первообразная и интеграл»

Тема: «Первообразная и интеграл».

Группа: 82 (14-ТТО II -118)

Специальность: Технология продукции общественного питания.

Тип: урок обобщения и систематизации знаний .

Форма: И гра.

Цели:

д идактические:

    формирование учебно-познавательной и информационной компетенций, посредством обобщения, систематизации знаний по теме «Первообразная. Интеграл», формирования навыков нахождения площади криволинейной трапеции несколькими способами.

развивающие:

    формирование информационной, общекультурной компетенций через развитие познавательной активности, интереса к предмету, творческих способностей учащихся, расширение кругозора, развитие математической речи.

воспитательные:

    формирование коммуникативной компетенции и компетенции личностного самосовершенствования, посредством работы над коммуникативными навыками, умением работать в сотрудничестве, над воспитанием таких личностных качеств, как организованность, дисциплинированность.

Средства обучения:

Технические: ПК, проектор, экран.

Ход урока

Подготовительный этап: группа заранее делится на две команды.

I. Организационный момент

Здравствуйте, ребята! Я рада приветствовать вас на уроке. Ц ель нашего урока - обобщить, систематизировать знания по теме «Первообразная и и нтеграл», подготовиться к предстоящему зачету.

Девиз нашей работы: «Исследуй всё, пусть для тебя на первом месте будет разум» - эти слова принадлежат древнегреческому ученому Пифагору.

Мы совершим необычное восхождение на вершину «Пика знаний».

Первенство будут оспаривать две группы. У каждой группы свой инструктор, который оценивает коэффициент участия каждого «туриста» в нашем восхождении.

Группа, которая первой достигнет вершины «Пика знаний», станет победителем.

II . Проверка домашнего задания: «Проверим рюкзаки».

Перед дальней дорогой нужно проверить насколько хорошо вы подготовились к восхождению. Проверим домашнее задание, которое было задано на предыдущем уроке:

Найти площадь фигуры ограниченной линиями:

,

Два человека по очереди выходят к доске кратко объясняют решение, которое они заранее заготовили на слайдах. Остальные в это время проверяют.

III . Разминка.

Принято, что человек, готовясь к соревнованию, свой день обычно начинает с зарядки, то есть с разминки.

Проведем разминку и мы.

Предлагается 9 тестовых заданий. Каждая команда по очереди выбирает вопрос, за правильные ответы получают жетоны (слайд)


    Операция нахождения неопределённого интеграла от некоторой функции называется…

    интегрированием;

    дифференцированием;

    логарифмированием;

    возведением в степень;

    извлечением корня.



    Закончите определение:

Неопределённым интегралом от функции y = f (x ) называется:

    производная функции F (x );

    совокупность всех первообразных функции y = f (x );

    совокупность всех производных функции y = f (x );

    знак вида .





    Формула Ньютона-Лейбница:


    Закончите определение:

«Дифференцируемая функция F(x) называется первообразной для функции f(x) на промежутке Х, если в каждой точке этого промежутка…»




I V . Математическая эстафета.

Теперь в путь! Подъем к «Пику знаний» будет нелегким, могут быть и завалы, и обвалы, и заносы. Но есть и привалы, где вас ждут не только задания. Чтобы продвинуться вперед, надо показать знания.

Работа в командах. На последней парте каждого ряда находится листок с 8 заданиями (по два вопроса на каждую парту). Первая пара учащихся, выполнив любые два задания, передает листок впереди сидящим. Работа считается оконченной, когда учитель получается листок с правильно выполненными 8 заданиями. Те же задания представлены на слайде. Вы можете решить не только свои задания, что проверить правильность решения членов своей команды.

Побеждает та команда, которая раньше всех решит все задания. Проверка работ осуществляется с помощью слайда. Заработанные баллы суммируются.


А теперь привал.

V . Привал.

«Счастливая случайность выпадает лишь на долю подготовленных умов» (Луи Пастер) (слайд).

Зачитываются сведения из истории интегрального исчисления (слайд).

Символ интеграла введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова сумма). Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integero, которое переводится, как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования “восстанавливает” функцию, дифференцированием которой получена подынтегральная функция.) Возможно происхождение слова интеграл иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласились с предложением Я. Бернулли. Тогда же, в 1696г., появилось и название новой ветви математики - интегральное исчисление (calculus integralis), которое ввел И. Бернулли.

Возникновение задач интегрального исчисления связано с нахождением площадей и объемов. Ряд задач такого рода был решен математиками древней

Греции. Античная математика предвосхитила идеи интегрального исчисления в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывающий метод, созданный.

Евдоксом Книдским (ок. 408 - ок. 355 до н. э.) и широко применявшийся

Архимедом (ок. 287 - 212 до н. э.).

В XVII веке были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П. Ферма уже в 1629 году решил задачу квадратуры любой кривой. Однако при всей значимости результатов, полученных математиками.

XVII столетия, исчисления еще не было. Необходимо было выделить общие идеи, лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно точный алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известный вам под названием формулы Ньютона - Лейбница.

В развитии интегрального исчисления приняли участие русские математики М. В. Остроградский (1801 - 1862 гг.), В. Я. Буняковский Строгое изложение теории интеграла появилось только в прошлом веке.

Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков немецкого ученого Б. Римана (1826 - 1866 гг.), французского математика Г. Дарбу (1842 - 1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1826 - 1922 гг.) теории меры.

Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875 - 1941 гг.) и

А. Данжуа (1884 - 1974) советским математиком А. Я. Хичиным (1894 -1959 гг.).

VI. Самое трудное восхождение.

Следующее задание предполагается выполнять в письменной форме, поэтому учащиеся работают в тетрадях.

Задача. Сколькими способами можно найти площадь фигуры, ограниченной линиями (слайд).

, , ,

У кого есть предложения? (фигура состоит из двух криволинейных трапеций и прямоугольника) (выбирайте способ решения слайд).

После обсуждения данной проблемы на слайде появляется запись:

1 способ: S =S 1 +S 2 +S 3

2 способ: S =S 1 +S ABCD -S OCD

Двое учащихся решают у доски с последующим объяснением решения, остальные учащиеся работают в тетрадях, выбрав один из способов решения (по одному человеку от команды).

Вывод (делают учащиеся): мы нашли два способа решения данной задачи, получив один и тот же результат. Обсудить какой способ проще.

VII . Последний подъем. Кроссворд (слайд)

Все очень устали, но чем ближе к цели, тем задания становятся все легче и легче.

Последний подъем. На слайде кроссворд. Ваша задача – решить его. По очереди каждая команда отгадывает понравившееся слово, записывает ответ.

VШ. Итог урока (слайд).

ОТКРЫТЫЙ УРОК ПО ТЕМЕ

« ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

СВОЙСТВА НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА».

2 часа.

11 а класс с углубленным изучением математики

Проблемное изложение.

Проблемно – поисковые технологии обучения.

ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

СВОЙСТВА НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА.


ЦЕЛЬ УРОКА:

Активизировать мыслительную деятельность;

Способствовать усвоению способов исследова-


- обеспечить более прочное усвоение знаний.

ЗАДАЧИ УРОКА:


  • ввести понятие первообразной;

  • доказать теорему о множестве первообразных для заданной функции (применяя определение первообразной);

  • ввести определение неопределенного интеграла;

  • доказать свойства неопределенного интеграла;

  • отработать навыки использования свойств неопределенного интеграла.

ПРЕДВАРИТЕЛЬНАЯ РАБОТА:


  • повторить правила и формулы дифференцирования

  • понятие дифференциала.
ХОД УРОКА
Предлагается решить задачи. Условия задач записаны на доске.

Учащиеся дают ответы по решению задач 1, 2.

(Актуализация опыта решения задач на использование дифферен-

цирования).


1. Закон движения тела S(t) , найти его мгновенную

скорость в любой момент времени.


- V(t) = S(t).
2. Зная, что количество электричества, протекающего

через проводник выражается формулой q (t) = 3t - 2 t,

выведите формулу для вычисления силы тока в любой

момент времени t.


- I (t) = 6t - 2.

3 . Зная скорость движущегося тела в каждый момент вре-

мени, найти закон его движения.


  1. Зная, что сила тока проходящего через проводник в лю-
бой момент времени I (t) = 6t – 2 , выведите формулу для

определения количества электричества, проходящего

через проводник.
Учитель: Возможно ли решить задачи № 3 и 4 используя

имеющиеся у нас средства?

(Создание проблемной ситуации).
Предположения учащихся:
- Для решения этой задачи необходимо ввести операцию,

обратную дифференцированию.

Операция дифференцирования сопоставляет заданной

функции F (x) ее производную.


F (x) = f (x).

Учитель: В чем заключается задача, дифференцированию?


Вывод учащихся:

Исходя из данной функции f (x) , найти такую функцию

F (x) производной которой является f (x) , т.е.
f (x) = F(x) .


Такая операция называется интегрированием, точнее

неопределенным интегрированием.


Раздел математики, в котором изучаются свойства операции интегрирования функций и ее приложения к решению задач физики и геометрии, называют интегральным исчислением.
Интегральное исчисление _ это раздел математического анализа, вместе с дифференциальным исчислением, оно составляет основу аппарата математического анализа.

Интегральное исчисление возникло из рассмотрения большого числа задач естествознания и математики. Важнейшие из них - физическая задача определения пройденного за данное время пути по известной, но быть может переменной скорости движения, и значительно более древняя задача – вычисления площадей и объемов геометрических фигур.


В чем состоит неопределенность этой обратной операции предстоит выяснить.
Введем определение. (кратко символически записывается

на доске).


Определение 1. Функцию F (x) , заданную на некотором промежут

ке X, называют первообразной для функции задан-

ной на том же промежутке, если для всех x X

выполняется равенство

F(x) = f (x) или d F(x) = f (x) dx .
Например. (x) = 2x, из этого равенства следует, что функция

x является первообразной на всей числовой оси

для функции 2x.

Используя определение первообразной, выполните упражнение


№ 2 (1,3,6) . Проверьте, что функция F является первообраз-

ной для функции f, если


1) F (x) =
2 cos 2x , f (x) = x - 4 sin 2x .

2) F (x) = tgх - cos 5x , f (x) =
+ 5 sin 5x.

3) F (x) = x sin x +
, f (x) = 4x sinx + x cosx +
.

Решения примеров записывают на доске учащиеся, комменти-

руя свои действия.

Является ли функция х единственной первообразной

для функции 2х?

Учащиеся приводят примеры

х + 3 ; х - 92, и т.д. ,


Вывод делают сами учащиеся:
любая функция имеет бесконечно много первообразных.
Всякая функция вида х + С, где С – некоторое число,

является первообразной функции х.


Теорема о первообразной записывается в тетради под диктовку

учителя.


Теорема. Если функция f имеет на промежутке первообраз-

ную F, то для любого числа С функция F + C также

является первообразной для f . Иных первообразных

функция f на Х не имеет.


Доказательство проводят учащиеся под руководством учителя.
а) Т.к. F - первообразная для f на промежутке Х, то

F (x) = f (x) для всех х Х.

Тогда для х Х для любого С имеем:

(F (x) + C) = f (x) . Это значит, что F (x) + C - тоже

первообразная f на Х.

б) Докажем, что иных первообразных на Х функция f

не имеет.

Предположим, что Ф тоже первообразная для f на Х.

Тогда Ф(x) = f (x) и потому для всех х Х имеем:

Ф (x) - F (x) = f (x) - f (x) = 0, следовательно

Ф - F постоянна на Х. Пусть Ф (x) – F (x) = C , тогда

Ф (x) = F (x) + C, значит любая первообразная

функции f на Х имеет вид F + C.

Учитель: в чем заключается задача отыскания всех первообраз-

ных для данной функции?

Вывод формулируют учащиеся:

Задача отыскания всех первообразных, решается

отысканием какой-нибудь одной: если такая первооб-

разная найдена, то любая другая получается из нее

прибавлением постоянной.


Учитель формулирует определение неопределенного интеграла.
Определение 2. Совокупность всех первообразных функции f

называют неопределенным интегралом этой

функции.
Обозначение.
; - читается интеграл.
= F (x) + C, где F – одна из первообразных

для f , С пробегает множество

действительных чисел.

f - подынтегральная функция;

f (x)dx - подынтегральное выражение;

х - переменная интегрирования;

С - постоянная интегрирования.
Свойства неопределенного интеграла учащиеся изучают по учебнику самостоятельно и выписывают их в тетрадь.

.

Решения учащиеся записывают в тетрадях, работающий у доски

Муниципальное казенное общеобразовательное учреждение

средняя общеобразовательная школа №24 р. п. Юрты

Иркутской области.

Учитель Трушкова Наталья Евгеньевна.

Нестандартные формы закрепления, проверки знаний и умений учащихся по математике.

Национальная образовательная инициатива «Наша новая школа» предполагает применение в образовательном процессе индивидуального подхода, использование таких образовательных технологий и программ, которые развивают у каждого ребёнка интерес к процессу обучения. Решение этих задач требует обеспечения компетентностного подхода в обучении, взаимосвязи академических знаний и практических умений.

Огромные возможности для активизации познавательного интереса учащихся имеют уроки обобщения и систематизации знаний, интегрированные уроки, нетрадиционные уроки.

Важный вопрос, который волнует каждого учителя,- как сделать уроки математики интересными, нескучными и запоминающимися? Предлагаемый материал помогает решить эту задачу, призван помочь в организации нестандартных уроков. На уроке прослеживается связь теории и практики, сознательности и активности, положительной мотивации и благоприятного эмоционального фона. Эти принципы предполагают создание атмосферы сотрудничества между учителем и учащимися, между самими учащимися, стимулирование интереса учащихся.

Важным звеном процесса обучения математике является контроль знаний и умений школьников. От того, как он организован, на что нацелен, существенно зависит эффективность учебной работы. Поэтому в своей практике я уделяю серьёзное внимание способам организации контроля, его содержанию.

Урок-зачет (тематический)

по теме «Первообразная и интеграл». 11 класс. (2 урока).

Тема: Первообразная и интеграл.

Цели:

1. Проверить теоретические знания учащихся по теме.

2. Проверить умения, навыки учащихся по нахождению первообразной, вычислению площади криволинейной трапеции, вычислению интегралов.

3. Выявить пробелы в знаниях учащихся с целью их устранения перед контрольной работой.

4. Воспитывать у учащихся ответственное отношение к учёбе, ответственность перед товарищами, сопереживание.

Универсальные учебные действия (УУД), которые будут формироваться в ходе урока

Личностные:

Сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками;

Сформированность ответственного отношения к учению;

Умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

Слушать и понимать других;

Строить речевое высказывание в соответствии с поставленными задачами;

Коммуникативные:

Согласованно работать в группе:

Контроль оценки и действий партнёра;

С достаточной точностью выражать свои мысли.

Регулятивные:

Контроль (сличение с заданным эталоном).

Коррекция и оценка знаний и способов действий.

Оборудование:

а) компьютер, мультимедийный проектор, экран, слайды.

б) карточки;

в) раздаточные доски;

г) мел, тряпочки;

д) жетоны;

е) указатели столов.

Ход урока.

    Сообщение темы и целей урока (тема урока записана на доске).

    Сообщение учителем итогов подведения зачёта (таблица записана на доске).

Класс работает по группам 4 – 5 человек (столы сдвинуты по два).

    Представитель каждой группы выходит к столу учителя и берет теоретический вопрос (карточки с вопросами перевернуты). Группа готовится к ответу таким образом, чтобы любой ученик группы мог ответить на этот вопрос у доски.

На подготовку вопроса теории – 10 минут. По истечении этого времени каждой группе даются на подносах жетоны, где на одном из них стоит знак «+». Ученики по берут жетоны. Тот ученик, которому достался жетон с «+», идёт отвечать к доске на вопрос теории.

Группы готовят ответы на теорию на раздаточных досках, которые затем используют при ответе.

Каждый теоретический вопрос оценен баллом «3», кроме карточки №5. За ответ по карточке №5 дается 5 баллов.

Одна группа отвечает, остальные слушают и рецензируют ответ, дают оценку ответу (за 1 балл).

4.Проверка теории по карточке №1. Слайд 1.

Проверка теории по карточке №2. Слайд 2.

(за правильный ответ на примеры – 1 балл).

Проверка теории по карточке №3. Слайд 3.

(за правильный ответ на примеры – 1 балл).

Проверка теории по карточке №4. Слайд 4.

(за правильный ответ на примеры – 1 балл).

Проверка теории по карточке №5. Слайд 5.

(за правильный ответ на примеры– 1 балл).

После проверки теоретического материала объявляются итоги.

Во время перемены столы расставляются обычным образом.

1 ученик у доски:

После этого учащимся раздаются задания по вариантам (за каждое правильно решенное задание – 2 б); всего – 10 баллов.

Вариант 1.

а) f(x)=2 3; б) f(x)= +x 2 на (0;).

Вариант 2.

    Найдите первообразную для функции:

а) f(x)= -2 ; б) f(x)= - x 2 на (0;).

Те учащиеся, которые быстро решат все задания, получают дополнительное задание (2 примера) по вариантам. (Каждый пример – 3 балла).

После того, как все карточки сданы на проверку, у доски решается задание (1 ученик у доски), остальные решают в рабочих тетрадях.

Если останется время:

1 вариант

2 вариант

Вычислите площадь фигуры, ограниченной линиями у= -х 2 +3; у=2х.

Вычислите площадь фигуры, ограниченной линиями у= -х 2 +2;

Вычислите интегралы:

Объявляются итоги по зачету.

Для подсчета баллов удобно сделать таблицу:

упражнения

Оценка теории

Работа по вариантам

по 2б.(макс.10б.)

Дополнительные карточки

Дополнительные задания по 3 б.

Попова Е.

2 вариант

Такая же таблица делается для 1 варианта. Для подсчёта баллов привлекаются учащиеся другого 11 класса.

Тема урока: «Первообразная и интеграл» 11 класс (повторение)

Тип урока: урок оценки и коррекции знаний; повторения, обобщения, формирования знаний, умений, навыков.

Девиз урока : Не стыдно не знать, стыдно не учиться.

Цели урока:

  • Обучающие: повторить теоретический материал; отработать навыки нахождения первообразных, вычисления интегралов и площадей криволинейных трапеций.
  • Развивающие: развивать навыки самостоятельного мышления, интеллектуальные навыки (анализ, синтез, сравнение, сопоставление), внимание, память.
  • Воспитательные: воспитание математической культуры учащихся, повышение интереса к изучаемому материалу, осуществление подготовки к ЕНТ.

План конспект урока.

I. Организационный момент

II. Актуализация опорных знаний учащихся.

1.Устная работа с классом на повторение определений и свойств:

1. Что называется криволинейной трапецией?

2. Чему равна первообразная для функции f(х)=х2.

3. В чем заключается признак постоянства функции?

4. Что называется первообразной F(х) для функции f(х) на хI?

5. Чему равна первообразная для функции f(х)=sinx.

6. Верно ли высказывание: «Первообразная суммы функций равна сумме их первообразных»?

7. В чем заключается основное свойство первообразной?

8. Чему равна первообразная для функции f(х)=.

9. Верно ли высказывание: «Первообразная произведения функций равна произведению их

Первообразных»?

10. Что называется неопределенным интегралом?

11.Что называется определенным интегралом?


12.Назовите несколько примеров применения определенного интеграла в геометрии и физике.

Ответы

1. Фигуру, ограниченную графиками функций y=f(x), у=0, х=а, х=b, называют криволинейной трапецией.

2. F(x)=x3/3+С.

3. Если F`(x0)=0 на некотором промежутке, то функция F(x) – постоянная на этом промежутке.

4. Функция F(x) называется первообразной для функции f(x) на заданном промежутке, если для всех х из этого промежутка F`(x)=f(x).

5. F(x)= - cosx+C.

6. Да, верно. Это одно из свойств первообразных.

7. Любая первообразная для функции f на заданном промежутке может быть записана в виде

F(x)+C, где F(x) – одна из первообразных для функции f(x) на заданном промежутке, а С –

Произвольная постоянная.

9. Нет, не верно. Нет такого свойства первообразных.

10. Если функция у=f(x) имеет на заданном промежутке первообразную у= F(x), то множество всех первообразных у= F(x)+С называют неопределенным интегралом от функции у=f(x).

11. Разность значений первообразной функции в точках b и a для функции у = f (x ) на промежутке [ a ; b ] называется определенным интегралом функции f(x) на промежутке [ a ; b ] .

12..Вычисление площади криволинейной трапеции, объемов тел и вычисление скорости тела в определенный промежуток времени.

Применение интеграла. (дополнительно записать в тетрадях)


Величины


Вычисление производной


Вычисление интеграла


s – перемещение,

А – ускорение

A(t) =


A - работа,

F – сила,

N - мощность


F(x) = A"(x)

N(t) = A"(t)


m – масса тонкого стержня,

Линейная плотность


(x) = m"(x)


q – электрический заряд,

I –сила тока


I(t) = q(t)


Q – количество теплоты

С - теплоемкость


c(t) = Q"(t)


Правила вычисления первообразных


- Если F – первообразная для f, a G - первообразная для g, то F+G есть первообразная для f+g.

Если F – первообразная для f, a k – постоянная, то kF есть первообразная для kf.

Если F(x) –первообразная для f(x), ak, b – постоянные, причем k0, то есть есть первообразная для f(kx+b).

^ 4) - формула Ньютона-Лейбница.

5) Площадь S фигуры, ограниченной прямыми x-a,x=b и графиками непрерывных на промежутке функций и таких, что для всех x вычисляется по формуле

6) Объемы тел, образованных вращением криволинейной трапеции, ограниченной кривой y = f(x), осью Ox и двумя прямыми x = a и x = b вокруг осей Ох и Оу, вычисляются соответственно по формулам:

Найдите неопределенный интеграл: (устно)


1.


2.


3.


4.


5.


6.


7.

Ответы:


1.


2.


3.


4.


5.


6.


7.

III Решение заданий с классом


1. Вычислите определенный интеграл: (в тетрадях, один учащийся на доске)

Задачи по рисункам с решениями:

№ 1. Найти площадь криволинейной трапеции, ограниченной линиями y= x3, y=0, x=-3, x=1.

Решение.

-∫ х3 dx + ∫ x3 dx = - (x4/4) | + (x4 /4) | = (-3)4 /4 + 1/4 = 82/4 = 20,5

№3. Вычислите площадь фигуры, ограниченной линиями у=x3+1, у=0, x=0

№ 5. Вычислите площадь фигуры, ограниченной линиями у= 4 -х2, у=0,

Решение. Сначала построим график, чтобы определить пределы интегрирования. Фигура состоит из двух одинаковых кусочков. Вычисляем площадь той части, что справа от оси у, и удваиваем.

№ 4. Вычислите площадь фигуры, ограниченной линиями у=1+2sin x, у=0, x=0, x=п/2

F(x) = x - 2cosx; S = F(п/2) - F(0) = п/2 -2cos п/2 - (0 - 2cos0) = п/2 + 2

Вычислите площадь криволинейных трапеций, ограниченных графиками известных вам линий.

3. Вычислите по рисункам площади заштрихованных фигур (самостоятельная работа в парах)

Задание: Вычислите площадь заштрихованной фигуры

Задание: Вычислите площадь заштрихованной фигуры

III Итоги урока.

а) рефлексия: -Какие выводы от урока вы сделали для себя?

Есть ли каждому над чем поработать самостоятельно?

Полезен ли был для вас урок?

б) анализ работы учащихся

в) Дома: повторить, свойства все формулы первообразных, формулы нахождения площади криволинейной трапеции, объемов тел вращения. № 136 (Шыныбеков)

11 класс Орлова Е.В.

«Первообразная и неопределённый интеграл»

СЛАЙД 1

Цели урока:

    Образовательные : сформировать и закрепить понятие первообразной, находить первообразные функции разного уровня.

    Развивающая: развивать мыслительную деятельность учащихся, основанную на операциях анализа, сравнениях, обобщения, систематизации.

    Воспитательная: формировать мировоззренческие взгляды учащихся, воспитывать от ответственности за полученный результат, чувство успеха.

Тип урока: изучение нового материала.

Оборудование: компьютер, мультимедийная доска.

Ожидаемые результаты обучения: ученик должен

    определение производной

    первообразная определяется неоднозначно.

    находить первообразные функции в простейших случаях

    проверять, является ли первообразная для функции на данном промежутке времени.

Ход урока

    Организационный момент СЛАЙД 2

    Проверка домашнего задания

    Сообщение темы, цели урока, задач и мотивации учебной деятельности.

На доске записи:

Производная –производит « на свет новую функцию».

Первообразная – «первичный образ».

4. Актуализация знаний, систематизация знаний в сравнении .

Дифференцирование-отыскание производной.

Интегрирование - по заданной производной восстановление функции.

Знакомство с новыми символами:

5.Устные упражнения: СЛАЙД 3

вместо точек поставьте какую-нибудь функцию, удовлетворяющую равенству.

    выполняется самопроверка учащимися.

    корректировка знаний учащихся.

5. Изучение нового материала.

А) Взаимно-обратные операции в математике.

Учитель: в математике существуют 2 взаимно-обратные операции в математике. Рассмотрим в сравнении. СЛАЙД 4

Б) Взаимно-обратные операции в физике.

Рассматриваются две взаимно-обратные задачи в разделе механике.

Нахождение скорости по заданному уравнению движения материальной точки(нахождение производной функции) и нахождение уравнения траектория движения по известной формуле скорости.

В) Вводится определение первообразной, неопределённого интеграла

СЛАЙД 5, 6

Учитель: чтобы задача стала более определенной, нам надо зафиксировать исходную ситуацию.

Г) Таблица первообразных СЛАЙД 7

Задания на формирование умения находить первообразную – работа в группах СЛАЙД 8

Задания на формирование умения доказывать, что первообразная является для функции на заданном промежутке – парная работа.

6.Физминутка СЛАЙД 9

7. Первичное осмысление и применение изученного. СЛАЙД 10

8. Постановка домашнего задания СЛАЙД 11

9. Подведение итогов урока. СЛАЙД 12

В ходе фронтального опроса вместе с учащимися подводятся итоги урока, осознанное осмысление понятие нового материала, можно виде смайликов.

Все понял(а), все успел(а).

    частично не понял(а), не все успел(а).

Лучшие статьи по теме