Для школьников и родителей
  • Главная
  • Праздники 
  • Высшая математика. Теория рядов. Признаки сходимости числовых рядов Схождение и расхождение рядов

Высшая математика. Теория рядов. Признаки сходимости числовых рядов Схождение и расхождение рядов

Ряды для чайников. Примеры решений

Всех выживших приветствую на втором курсе! На этом уроке, а точнее, на серии уроков, мы научимся управляться с рядами. Тема не очень сложная, но для ее освоения потребуются знания с первого курса, в частности, необходимо понимать, что такое предел , и уметь находить простейшие пределы. Впрочем, ничего страшного, по ходу объяснений я буду давать соответствующие ссылки на нужные уроки. Некоторым читателям тема математических рядов, приемы решения, признаки, теоремы могут показаться своеобразными, и даже вычурными, нелепыми. В этом случае не нужно сильно «загружаться», принимаем факты такими, какими они есть, и просто учимся решать типовые, распространенные задания.

1) Ряды для чайников , и для самоваров сразу содержание:)

Для сверхбыстрой подготовки по теме есть экспресс-курс в pdf формате , с помощью которого реально «поднять» практику буквально за день.

Понятие числового ряда

В общем виде числовой ряд можно записать так: .
Здесь:
– математический значок суммы;
общий член ряда (запомните этот простой термин);
– переменная-«счётчик». Запись обозначает, что проводится суммирование от 1 до «плюс бесконечности», то есть, сначала у нас , затем , потом , и так далее – до бесконечности. Вместо переменной иногда используется переменная или . Суммирование не обязательно начинается с единицы, в ряде случаев оно может начинаться с нуля , с двойки либо с любого натурального числа .

В соответствии с переменной-«счётчиком» любой ряд можно расписать развёрнуто:
– и так далее, до бесконечности.

Cлагаемые – это ЧИСЛА , которые называются членами ряда. Если все они неотрицательны (больше либо равны нулю) , то такой ряд называют положительным числовым рядом .

Пример 1



Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.

Сначала , тогда:
Затем , тогда:
Потом , тогда:

Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:

Обратите внимание на принципиальное отличие от числовой последовательности ,
в которой члены не суммируются, а рассматриваются как таковые.

Пример 2

Записать первые три члена ряда

Это пример для самостоятельного решения, ответ в конце урока

Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:

Пример 3

Записать первые три члена ряда

На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:

Ответ оставляем в таком виде, полученные члены ряда лучше не упрощать , то есть не выполнять действия: , , . Почему? Ответ в виде гораздо проще и удобнее проверять преподавателю.

Иногда встречается обратное задание

Пример 4



Здесь нет какого-то четкого алгоритма решения, закономерность нужно просто увидеть .
В данном случае:

Для проверки полученный ряд можно «расписать обратно» в развернутом виде.

А вот пример чуть сложнее для самостоятельного решения:

Пример 5

Записать сумму в свёрнутом виде с общим членом ряда

Выполнить проверку, снова записав ряд в развернутом виде

Сходимость числовых рядов

Одной из ключевых задач темы является исследование ряда на сходимость . При этом возможны два случая:

1) Ряд расходится . Это значит, что бесконечная сумма равна бесконечности: либо суммы вообще не существует , как, например, у ряда
(вот, кстати, и пример ряда с отрицательными членами). Хороший образец расходящегося числового ряда встретился в начале урока: . Здесь совершенно очевидно, что каждый следующий член ряда больше, чем предыдущий, поэтому и, значит, ряд расходится. Ещё более тривиальный пример: .

2) Ряд сходится . Это значит, что бесконечная сумма равна некоторому конечному числу : . Пожалуйста: – этот ряд сходится и его сумма равна нулю. В качестве более содержательного примера можно привести бесконечно убывающую геометрическую прогрессию, известную нам ещё со школы: . Сумма членов бесконечно убывающей геометрической прогрессии рассчитывается по формуле: , где – первый член прогрессии, а – её основание, которое, как правило, записывают в виде правильной дроби. В данном случае: , . Таким образом: Получено конечное число, значит, ряд сходится, что и требовалось доказать.

Однако в подавляющем большинстве случаев найти сумму ряда не так-то просто, и поэтому на практике для исследования сходимости ряда используют специальные признаки, которые доказаны теоретически.

Существует несколько признаков сходимости ряда: необходимый признак сходимости ряда, признаки сравнения, признак Даламбера, признаки Коши , признак Лейбница и некоторые другие признаки. Когда какой признак применять? Это зависит от общего члена ряда , образно говоря – от «начинки» ряда. И очень скоро мы всё разложим по полочкам.

! Для дальнейшего усвоения урока необходимо хорошо понимать , что такое предел и хорошо уметь раскрывать неопределенность вида . Для повторения или изучения материала обратитесь к статье Пределы. Примеры решений .

Необходимый признак сходимости ряда

Если ряд сходится, то его общий член стремится к нулю: .

Обратное в общем случае неверно, т.е., если , то ряд может как сходиться, так и расходиться. И поэтому этот признак используют для обоснования расходимости ряда:

Если общий член ряда не стремится к нулю , то ряд расходится

Или короче: если , то ряд расходится. В частности, возможна ситуация, когда предела не существует вообще, как, например, предела . Вот сразу и обосновали расходимость одного ряда:)

Но гораздо чаще предел расходящегося ряда равен бесконечности, при этом в качестве «динамической» переменной вместо «икса» выступает . Освежим наши знания: пределы с «иксом» называют пределами функций , а пределы с переменной «эн» – пределами числовых последовательностей . Очевидное отличие состоит в том, что переменная «эн» принимает дискретные (прерывные) натуральные значения: 1, 2, 3 и т.д. Но данный факт мало сказывается на методах решения пределов и способах раскрытия неопределенностей.

Докажем, что ряд из первого примера расходится.
Общий член ряда:

Вывод : ряд расходится

Необходимый признак часто применяется в реальных практических заданиях:

Пример 6

В числителе и знаменателе у нас находятся многочлены. Тот, кто внимательно прочитал и осмыслил метод раскрытия неопределенности в статье Пределы. Примеры решений , наверняка уловил, что когда старшие степени числителя и знаменателя равны , тогда предел равен конечному числу .


Делим числитель и знаменатель на

Исследуемый ряд расходится , так как не выполнен необходимый признак сходимости ряда.

Пример 7

Исследовать ряд на сходимость

Это пример для самостоятельного решения. Полное решение и ответ в конце урока

Итак, когда нам дан ЛЮБОЙ числовой ряд, в первую очередь проверяем (мысленно или на черновике): а стремится ли его общий член к нулю? Если не стремится – оформляем решение по образцу примеров № 6, 7 и даём ответ о том, что ряд расходится.

Какие типы очевидно расходящихся рядов мы рассмотрели? Сразу понятно, что расходятся ряды вроде или . Также расходятся ряды из примеров № 6, 7: когда в числителе и знаменателе находятся многочлены, и старшая степень числителя больше либо равна старшей степени знаменателя . Во всех этих случаях при решении и оформлении примеров мы используем необходимый признак сходимости ряда.

Почему признак называется необходимым ? Понимайте самым естественным образом: для того, чтобы ряд сходился, необходимо , чтобы его общий член стремился к нулю. И всё бы было отлично, но этого ещё не достаточно . Иными словами, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится – он может, как сходиться, так и расходиться!

Знакомьтесь:

Данный ряд называется гармоническим рядом . Пожалуйста, запомните! Среди числовых рядов он является прима-балериной. Точнее, балеруном =)

Легко заметить, что , НО. В теории математического анализа доказано, что гармонический ряд расходится .

Также следует запомнить понятие обобщенного гармонического ряда:

1) Данный ряд расходится при . Например, расходятся ряды , , .
2) Данный ряд сходится при . Например, сходятся ряды , , . Еще раз подчеркиваю, что почти во всех практических заданиях нам совершенно не важно, чему равна сумма , например, ряда , важен сам факт его сходимости .

Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .

Вообще, рассматриваемый материал очень похож на исследование несобственных интегралов , и тому, кто изучал эту тему, будет легче. Ну а тому, кто не изучал – легче вдвойне:)

Итак, что делать, если общий член ряда СТРЕМИТСЯ к нулю? В таких случаях для решения примеров нужно использовать другие, достаточные признаки сходимости / расходимости:

Признаки сравнения для положительных числовых рядов

Заостряю ваше внимание , что здесь речь уже идёт только о положительных числовых рядах (с неотрицательными членами) .

Существуют два признака сравнения, один из них я буду называть просто признаком сравнения , другой – предельным признаком сравнения .

Сначала рассмотрим признак сравнения , а точнее, первую его часть:

Рассмотрим два положительных числовых ряда и . Если известно , что ряд – сходится , и, начиная с некоторого номера , выполнено неравенство , то ряд тоже сходится .

Иными словами: Из сходимости ряда с бОльшими членами следует сходимость ряда с меньшими членами . На практике неравенство часто выполнено вообще для всех значений :

Пример 8

Исследовать ряд на сходимость

Во-первых, проверяем (мысленно либо на черновике) выполнение :
, а значит, «отделаться малой кровью» не удалось.

Заглядываем в «пачку» обобщенного гармонического ряда и, ориентируясь на старшую степень, находим похожий ряд: Из теории известно, что он сходится.

Для всех натуральных номеров справедливо очевидное неравенство:

а бОльшим знаменателям соответствуют мЕньшие дроби:
, значит, по признаку сравнения исследуемый ряд сходится вместе с рядом .

Если у вас есть какие-то сомнения, то неравенство всегда можно расписать подробно! Распишем построенное неравенство для нескольких номеров «эн»:
Если , то
Если , то
Если , то
Если , то
….
и теперь-то уж совершенно понятно, что неравенство выполнено для всех натуральных номеров «эн».

Проанализируем признак сравнения и решенный пример с неформальной точки зрения. Все-таки, почему ряд сходится? А вот почему. Если ряд сходится, то он имеет некоторую конечную сумму : . И поскольку все члены ряда меньше соответствующих членов ряда , то ясен пень, что сумма ряда не может быть больше числа , и тем более, не может равняться бесконечности!

Аналогично можно доказать сходимость «похожих» рядов: , , и т.д.

! Обратите внимание , что во всех случаях в знаменателях у нас находятся «плюсы». Наличие хотя бы одного минуса может серьёзно осложнить использование рассматриваемого признака сравнения . Например, если ряд таким же образом сравнить со сходящимся рядом (выпишите несколько неравенств для первых членов), то условие не будет выполняться вообще! Здесь можно извернуться и подобрать для сравнения другой сходящийся ряд, например, , но это повлечёт за собой лишние оговорки и другие ненужные трудности. Поэтому для доказательства сходимости ряда гораздо проще использовать предельный признак сравнения (см. следующий параграф).

Пример 9

Исследовать ряд на сходимость

И в этом примере я предлагаю вам самостоятельно рассмотреть вторую часть признака сравнения :

Если известно , что ряд – расходится , и, начиная с некоторого номера (часто с самого первого), выполнено неравенство , то ряд тоже расходится .

Иными словами: Из расходимости ряда с меньшими членами следует расходимость ряда с бОльшими членами .

Что нужно сделать?
Нужно сравнить исследуемый ряд с расходящимся гармоническим рядом . Для лучшего понимания постройте несколько конкретных неравенств и убедитесь в справедливаости неравенства .

Решение и образец оформления в конце урока.

Как уже отмечалось, на практике только что рассмотренный признак сравнения применяют редко. Настоящей «рабочей лошадкой» числовых рядов является предельный признак сравнения , и по частоте использования с ним может конкурировать разве что признак Даламбера .

Предельный признак сравнения числовых положительных рядов

Рассмотрим два положительных числовых ряда и . Если предел отношения общих членов этих рядов равен конечному, отличному от нуля числу : , то оба ряда сходятся или расходятся одновременно .

Когда применяется предельный признак сравнения? Предельный признак сравнения применяется тогда, когда «начинкой» ряда у нас являются многочлены. Либо один многочлен в знаменателе, либо многочлены и в числителе и в знаменателе. Опционально многочлены могут находиться под корнями.

Разделаемся с рядом, для которого забуксовал предыдущий признак сравнения.

Пример 10

Исследовать ряд на сходимость

Сравним данный ряд со сходящимся рядом . Используем предельный признак сравнения. Известно, что ряд – сходится. Если нам удастся показать, что равен конечному, отличному от нуля числу, то будет доказано, что ряд – тоже сходится.


Получено конечное, отличное от нуля число, значит, исследуемый ряд сходится вместе с рядом .

Почему для сравнения был выбран именно ряд ? Если бы мы выбрали любой другой ряд из «обоймы» обобщенного гармонического ряда, то у нас не получилось бы в пределе конечного, отличного от нуля числа (можете поэкспериментировать).

Примечание : когда мы используем предельный признак сравнения, не имеет значения , в каком порядке составлять отношение общих членов, в рассмотренном примере отношение можно было составить наоборот: – это не изменило бы сути дела.

Пусть задан положительный числовой ряд $ \sum_{n=1} ^\infty a_n $. Сформулируем необходимый признак сходимости ряда:

  1. Если ряд сходится, то предел его общего члена равен нулю: $$ \lim _{n \to \infty} a_n = 0 $$
  2. Если предел общего члена ряда не равен нулю, то ряд расходится: $$ \lim _{n \to \infty} a_n \neq 0 $$

Обобщенный гармонический ряд

Данный ряд записывается следующим образом $ \sum_{n=1} ^\infty \frac{1}{n^p} $. Причем в зависимости от $ p $ ряд сходится или расходится:

  1. Если $ p = 1 $, то ряд $ \sum_{n=1} ^\infty \frac{1}{n} $ расходится и называется гармоническим, несмотря на то, что общий член $ a_n = \frac{1}{n} \to 0 $. Почему так? В замечании говорилось, что необходимый признак не даёт ответа о сходимости, а только о расходимости ряда. Поэтому, если применить достаточный признак, такой как интегральный признак Коши, то станет ясно, что ряд расходится!
  2. Если $ p \leqslant 1 $, то ряд расходится. Пример,$ \sum_{n=1} ^\infty \frac{1}{\sqrt{n}} $, в котором $ p = \frac{1}{2} $
  3. Если $ p > 1 $, то ряд сходится. Пример, $ \sum_{n=1} ^\infty \frac{1}{\sqrt{n^3}} $, в котором $ p = \frac{3}{2} > 1 $

Примеры решений

Пример 1
Доказать расходимость ряда $ \sum_{n=1} ^\infty \frac{n}{6n+1} $
Решение

Ряд положительный, записываем общий член:

$$ a_n = \frac{n}{6n+1} $$

Вычисляем предел при $ n \to \infty $:

$$ \lim _{n \to \infty} \frac{n}{6n+1} = \frac{\infty}{\infty} = $$

Выносим за скобку $ n $ в знаменателе, а затем выполняем на него сокращение:

$$ = \lim_{n \to \infty} \frac{n}{n(6+\frac{1}{n})} = \lim_{n \to \infty} \frac{1}{6 + \frac{1}{n}} = \frac{1}{6} $$

Так как получили, что $ \lim_{n\to \infty} a_n = \frac{1}{6} \neq 0 $, то необходимый признак Коши не выполнен и ряд следовательно расходится.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Ряд расходится

На практике часто не столь важно найти сумму ряда, как ответить на вопрос о сходимости ряда. Для этой цели используются признаки сходимости, основанные на свойствах общего члена ряда.

НЕОБХОДИМЫЙ ПРИЗНАК СХОДИМОСТИ РЯДА

ТЕОРЕМА 1 .

Если ряд сходится, то его общий член a n стремится к нулю при , т.е. .

Кратко: если ряд сходится, то его общий член стремится к нулю.

Следствие: если ,то ряд расходится.

Пример 15 .

Решение. Для этого ряда общий член и .

Следовательно, данный ряд расходится.

Пример 16 . Исследовать на сходимость ряд .

Решение. Очевидно, что общий член этого ряда, вид которого не указан ввиду громоздкости выражения, стремится к нулю при n®¥, т.е. необходимый признак сходимости ряда выполняется, однако этот ряд расходится, так как его сумма стремится к бесконечности.

ДОСТАТОЧНЫЕ ПРИЗНАКИ СХОДИМОСТИ

ЗНАКОПОЛОЖИТЕЛЬНЫХ РЯДОВ

Числовой ряд, все члены которого положительны, называется знакоположительным.

ТЕОРЕМА 2. (Первый признак сравнения).

Пусть даны два знакоположительных ряда:

a 1 +a 2 +a 3 +...+a n +...= (17)

b 1 +b 2 +b 3 +...+b n +...= , (18)

причем, начиная с некоторого номера N , для любого n >N выполняется неравенство a n £ b n . Тогда:

1) из сходимости ряда (“большего”) следует сходимость ряда (“меньшего”);

2) из расходимости ряда (“меньшего”) следует расходимость ряда (“большего”).

Схематическая запись первого признака сравнения:

a n £ b n

сход.сход.

расх.®расх.

Для применения этого признака часто используют такие ряды-эталоны, сходимость или расходимость которых известна заранее, например:

1) ¾ геометрический, (он сходится при и расходится при );


2) - гармонический (он расходится);

3) - ряд Дирихле (он сходится при a>1 и расходится при a£1).

Рассмотрим на конкретном примере схему исследования знакоположительного ряда на сходимость с помощью первого признака сравнения.

Пример 17 .

Решение. Шаг 1. Проверим знакоположительность ряда: .

Шаг 2. Проверим выполнение необходимого признака сходимости ряда: . Так как , то .

(Если вычисление предела вызывает трудности, то этот шаг можно пропустить.)

Шаг 3. Используем первый признак сравнения. Подберем для данного ряда ряд-эталон. Так как , то в качестве эталона можно взять ряд , т.е. ряд Дирихле. Этот ряд сходится, так как показатель степени a= >1. Следовательно, согласно первому признаку сравнения сходится и исследуемый ряд.

Пример 18 . Исследовать ряд на сходимость.

Решение. 1.Данный ряд знакоположительный, так как для n =1,2,3,... .


2.Необходимый признак сходимости ряда выполняется, ибо

3.Подберем ряд-эталон. Так как , то в качестве эталона можно взять геометрический ряд (). Этот ряд сходится, следовательно сходится и исследуемый ряд.

ТЕОРЕМА 3. (Второй признак сравнения)

Если для знакоположительных рядов и существует отличный от нуля конечный предел ,то ряды сходятся или расходятся одновременно.

Если a n ®0 при n®¥ (необходимый признак сходимости), то из условия , следует, что a n и b n – бесконечно малые одного порядка малости (эквивалентные при l=1). Следовательно, если дан ряд , где a n ®0 при n ®0, то для этого ряда можно брать ряд-эталон, где общий член b n имеет тот же порядок малости, что и общий член данного ряда.

Пример19 . Исследовать на сходимость ряд

Решение. Данный ряд знакоположительный, так как для любого nÎN.

Так как ~ ~ , то возьмем в качестве ряда-эталона гармонический расходящийся ряд . Поскольку предел отношения общих членов a n и конечен и отличен от нуля (он равен 1), то на основании второго признака сравнения данный ряд расходится.

ТЕОРЕМА 4. (Признак Даламбера)

Если для знакоположительного ряда существует конечный предел , то ряд сходится при l<1 и расходится при l>1.

Замечания:

1) Если l=1, теорема 4 не дает ответа на вопрос о сходимости ряда и поэтому необходимо использовать другие признаки сходимости.

2) Признак Даламбера удобен на практике тогда, когда общий член ряда содержит показательную функцию или факториал.

Пример 20 . Исследовать на сходимость ряд по признаку Даламбера.

Замечания:

1) Если l=1, теорема 5 не дает ответа на вопрос о сходимости ряда, поэтому необходимо использовать другие признаки сравнения.

2) Если l=¥ , то ряд расходится.

Пример 22 . Исследовать на сходимость ряд .

Решение. Данный ряд знакоположительный, так как для любого nÎN . Опуская проверку выполнимости необходимого признака сходимости ряда, сразу воспользуемся теоремой 5. Так как , то по признаку Коши данный ряд расходится.

ТЕОРЕМА 6. (Интегральный признак Коши )

Пусть функция f(x) непрерывна, неотрицательна и не возрастает для всех x³m, где m - некоторое неотрицательное число. Тогда числовой ряд

сходится, если сходится несобственный интеграл

Определение 1.1. Числовым рядом с общим членом называют последовательность чисел соединенных знаком сложения, т. е. выражение вида:

Такой ряд записывают также в виде

Пример 1.1. Если то ряд имеет вид:

Иногда при записи ряда выписывают только несколько его первых членов. Это делают лишь тогда, когда закономерность, характерная для членов ряда, легко усматривается. Строго говоря, такой способ задания ряда не является математически корректным, так как получение формулы общего члена по нескольким первым членам ряда - задача, не имеющая однозначного решения.

Пример 1.2. Напишем одну из возможных формул для общего члена ряда, зная его первые 4 члена:

Решение. Рассмотрим сначала последовательность числителей 2, 5, 8, 11. Они образуют арифметическую прогрессию, первый член которой равен 2, а разность равна 3. Это позволяет в качестве общего выражения для числителя взять формулу общего члена арифметической прогрессии: Знаменатели 2, 6, 18, 54 образуют геометрическую прогрессию с

первым членом 2 и знаменателем 3. В качестве их общего выражения можно взять формулу общего члена геометрической прогрессии Итак, общий член ряда будет иметь следующий вид:

Следует отметить, что в качестве общего члена можно было бы принять и более сложное выражение

Данная статья представляет собой структурированную и подробную информацию, которая может пригодиться во время разбора упражнений и задач. Мы рассмотрим тему числовых рядов.

Данная статья начинается с основных определений и понятий. Далее мы стандартные варианты и изучим основные формулы. Для того, чтобы закрепить материал, в статье приведены основные примеры и задачи.

Базовые тезисы

Для начала представим систему: a 1 , a 2 . . . , a n , . . . , где a k ∈ R , k = 1 , 2 . . . .

Для примера, возьмем такие числа, как: 6 , 3 , - 3 2 , 3 4 , 3 8 , - 3 16 , . . . .

Определение 1

Числовой ряд – это сумма членов ∑ a k k = 1 ∞ = a 1 + a 2 + . . . + a n + . . . .

Чтобы лучше понять определение, рассмотрим данный случай, в котором q = - 0 . 5: 8 - 4 + 2 - 1 + 1 2 - 1 4 + . . . = ∑ k = 1 ∞ (- 16) · - 1 2 k .

Определение 2

a k является общим или k –ым членом ряда.

Он выглядит примерно таким образом - 16 · - 1 2 k .

Определение 3

Частичная сумма ряда выглядит примерно таким образом S n = a 1 + a 2 + . . . + a n , в которой n –любое число. S n является n -ой суммой ряда.

Например, ∑ k = 1 ∞ (- 16) · - 1 2 k есть S 4 = 8 - 4 + 2 - 1 = 5 .

S 1 , S 2 , . . . , S n , . . . образуют бесконечную последовательность числового ряда.

Для ряда n –ая сумму находится по формуле S n = a 1 · (1 - q n) 1 - q = 8 · 1 - - 1 2 n 1 - - 1 2 = 16 3 · 1 - - 1 2 n . Используем следующую последовательность частичных сумм: 8 , 4 , 6 , 5 , . . . , 16 3 · 1 - - 1 2 n , . . . .

Определение 4

Ряд ∑ k = 1 ∞ a k является сходящимся тогда, когда последовательность обладает конечным пределом S = lim S n n → + ∞ . Если предела нет или последовательность бесконечна, то ряд ∑ k = 1 ∞ a k называется расходящимся.

Определение 5

Суммой сходящегося ряда ∑ k = 1 ∞ a k является предел последовательности ∑ k = 1 ∞ a k = lim S n n → + ∞ = S .

В данном примере lim S n n → + ∞ = lim 16 3 т → + ∞ · 1 - 1 2 n = 16 3 · lim n → + ∞ 1 - - 1 2 n = 16 3 , ряд ∑ k = 1 ∞ (- 16) · - 1 2 k сходится. Сумма равна 16 3: ∑ k = 1 ∞ (- 16) · - 1 2 k = 16 3 .

Пример 1

В качестве примера расходящегося ряда можно привести сумму геометрической прогрессии со знаменателем большем, чем единица: 1 + 2 + 4 + 8 + . . . + 2 n - 1 + . . . = ∑ k = 1 ∞ 2 k - 1 .

n -ая частичная сумма определяется выражением S n = a 1 · (1 - q n) 1 - q = 1 · (1 - 2 n) 1 - 2 = 2 n - 1 , а предел частичных сумм бесконечен: lim n → + ∞ S n = lim n → + ∞ (2 n - 1) = + ∞ .

Еще одим примером расходящегося числового ряда является сумма вида ∑ k = 1 ∞ 5 = 5 + 5 + . . . . В этом случае n -ая частичная сумма может быть вычислена как S n = 5 n . Предел частичных сумм бесконечен lim n → + ∞ S n = lim n → + ∞ 5 n = + ∞ .

Определение 6

Сумма подобного вида как ∑ k = 1 ∞ = 1 + 1 2 + 1 3 + . . . + 1 n + . . . – это гармонический числовой ряд.

Определение 7

Сумма ∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + . . . + 1 n s + . . . , где s –действительное число, является обобщенно гармоническим числовым рядом.

Определения, рассмотренные выше, помогут вам для решения большинства примеров и задач.

Для того, чтобы дополнить определения, необходимо доказать определенные уравнения.

  1. ∑ k = 1 ∞ 1 k – расходящийся.

Действуем методом от обратного. Если он сходится, то предел конечен. Можно записать уравнение как lim n → + ∞ S n = S и lim n → + ∞ S 2 n = S . После определенных действий мы получаем равенство l i m n → + ∞ (S 2 n - S n) = 0 .

Напротив,

S 2 n - S n = 1 + 1 2 + 1 3 + . . . + 1 n + 1 n + 1 + 1 n + 2 + . . . + 1 2 n - - 1 + 1 2 + 1 3 + . . . + 1 n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n

Справедливы следующие неравенства 1 n + 1 > 1 2 n , 1 n + 1 > 1 2 n , . . . , 1 2 n - 1 > 1 2 n . Получаем, что S 2 n - S n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n > 1 2 n + 1 2 n + . . . + 1 2 n = n 2 n = 1 2 . Выражение S 2 n - S n > 1 2 указывает на то, что lim n → + ∞ (S 2 n - S n) = 0 не достигается. Ряд расходящийся.

  1. b 1 + b 1 q + b 1 q 2 + . . . + b 1 q n + . . . = ∑ k = 1 ∞ b 1 q k - 1

Необходимо подтвердить, что сумма последовательности чисел сходится при q < 1 , и расходится при q ≥ 1 .

Согласно приведенным выше определениям, сумма n членов определяется согласно формуле S n = b 1 · (q n - 1) q - 1 .

Если q < 1 верно

lim n → + ∞ S n = lim n → + ∞ b 1 · q n - 1 q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · 0 - 1 q - 1 = b 1 q - 1

Мы доказали, что числовой ряд сходится.

При q = 1 b 1 + b 1 + b 1 + . . . ∑ k = 1 ∞ b 1 . Суммы можно отыскать с использованием формулы S n = b 1 · n , предел бесконечен lim n → + ∞ S n = lim n → + ∞ b 1 · n = ∞ . В представленном варианте ряд расходится.

Если q = - 1 , то ряд выглядит как b 1 - b 1 + b 1 - . . . = ∑ k = 1 ∞ b 1 (- 1) k + 1 . Частичные суммы выглядят как S n = b 1 для нечетных n , и S n = 0 для четных n . Рассмотрев данный случай, мы удостоверимся, что предела нет и ряд является расходящимся.

При q > 1 справедливо lim n → + ∞ S n = lim n → + ∞ b 1 · (q n - 1) q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · ∞ - 1 q - 1 = ∞

Мы доказали, что числовой ряд расходится.

  1. Ряд ∑ k = 1 ∞ 1 k s сходится, если s > 1 и расходится, если s ≤ 1 .

Для s = 1 получаем ∑ k = 1 ∞ 1 k , ряд расходится.

При s < 1 получаем 1 k s ≥ 1 k для k , натурального числа. Так как ряд является расходящимся ∑ k = 1 ∞ 1 k , то предела нет. Следуя этому, последовательность ∑ k = 1 ∞ 1 k s неограниченна. Делаем вывод, что выбранный ряд расходится при s < 1 .

Необходимо предоставить доказательства, что ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 .

Представим S 2 n - 1 - S n - 1:

S 2 n - 1 - S n - 1 = 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s + 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s - - 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s

Допустим, что 1 (n + 1) s < 1 n s , 1 (n + 2) s < 1 n s , . . . , 1 (2 n - 1) s < 1 n s , тогда S 2 n - 1 - S n - 1 = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s < < 1 n s + 1 n s + . . . + 1 n s = n n s = 1 n s - 1

Представим уравнение для чисел, которые являются натуральными и четными n = 2: S 2 n - 1 - S n - 1 = S 3 - S 1 = 1 2 s + 1 3 s < 1 2 s - 1 n = 4: S 2 n - 1 - S n - 1 = S 7 - S 3 = 1 4 s + 1 5 s + 1 6 s + 1 7 s < 1 4 s - 1 = 1 2 s - 1 2 n = 8: S 2 n - 1 - S n - 1 = S 15 - S 7 = 1 8 s + 1 9 s + . . . + 1 15 s < 1 8 s - 1 = 1 2 s - 1 3 . . .

Получаем:

∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + 1 4 s + . . . + 1 7 s + 1 8 s + . . . + 1 15 s + . . . = = 1 + S 3 - S 1 + S 7 - S 3 + S 15 + S 7 + . . . < < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . .

Выражение 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . – это сумма геометрической прогрессии q = 1 2 s - 1 . Согласно исходным данным при s > 1 , то 0 < q < 1 . Получаем, ∑ k = 1 ∞ < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . = 1 1 - q = 1 1 - 1 2 s - 1 . Последовательность ряда при s > 1 увеличивается и ограничивается сверху 1 1 - 1 2 s - 1 . Представим, что есть предел и ряд является сходящимся ∑ k = 1 ∞ 1 k s .

Определение 8

Ряд ∑ k = 1 ∞ a k знакоположителен в том случае , если его члены > 0 a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакочередующийся , если знаки чисел отличаются. Данный пример представлен как ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k · a k или ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k + 1 · a k , где a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакопеременный , так как в нем множество чисел, отрицательных и положительных.

Второй вариант ряд – это частный случай третьего варианта.

Приведем примеры для каждого случая соответственно:

6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . . 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . .

Для третьего варианта также можно определить абсолютную и условную сходимость.

Определение 9

Знакочередующийся ряд ∑ k = 1 ∞ b k абсолютно сходится в том случае, когда ∑ k = 1 ∞ b k также считается сходящимся.

Подробно разберем несколько характерных вариантов

Пример 2

Если ряды 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . и 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . . определяются как сходящиеся, то верно считать, что 6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . .

Определение 10

Знакопеременный ряд ∑ k = 1 ∞ b k считается условно сходящимся в том случае, если ∑ k = 1 ∞ b k – расходящийся, а ряд ∑ k = 1 ∞ b k считается сходящимся.

Пример 3

Подробно разберем вариант ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . . Ряд ∑ k = 1 ∞ (- 1) k + 1 k = ∑ k = 1 ∞ 1 k , который состоит из абсолютных величин, определяется как расходящийся. Этот вариант считается сходящимся, так как это легко определить. Из данного примера мы узнаем, что ряд ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . будет считаться условно сходящимся.

Особенности сходящихся рядов

Проанализируем свойства для определенных случаев

  1. Если ∑ k = 1 ∞ a k будет сходится, то и ряд ∑ k = m + 1 ∞ a k также признается сходящимся. Можно отметить, что ряд без m членов также считается сходящимся. В случае, если мы добавляем к ∑ k = m + 1 ∞ a k несколько чисел, то получившийся результат также будет сходящимся.
  2. Если ∑ k = 1 ∞ a k сходится и сумма = S , то сходится и ряд ∑ k = 1 ∞ A · a k , ∑ k = 1 ∞ A · a k = A · S , где A –постоянная.
  3. Если ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k являются сходящимися, суммы A и B тоже, то и ряды ∑ k = 1 ∞ a k + b k и ∑ k = 1 ∞ a k - b k также сходятся. Суммы будут равняться A + B и A - B соответственно.
Пример 4

Определить, что ряд сходится ∑ k = 1 ∞ 2 3 k · k 3 .

Изменим выражение ∑ k = 1 ∞ 2 3 k · k 3 = ∑ k = 1 ∞ 2 3 · 1 k 4 3 . Ряд ∑ k = 1 ∞ 1 k 4 3 считается сходящимся, так как ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . В соответствии со вторым свойством, ∑ k = 1 ∞ 2 3 · 1 k 4 3 .

Пример 5

Определить, сходится ли ряд ∑ n = 1 ∞ 3 + n n 5 2 .

Преобразуем изначальный вариант ∑ n = 1 ∞ 3 + n n 5 2 = ∑ n = 1 ∞ 3 n 5 2 + n n 2 = ∑ n = 1 ∞ 3 n 5 2 + ∑ n = 1 ∞ 1 n 2 .

Получаем сумму ∑ n = 1 ∞ 3 n 5 2 и ∑ n = 1 ∞ 1 n 2 . Каждый ряд признается сходящимся согласно свойству. Так, как ряды сходятся, то исходный вариант тоже.

Пример 6

Вычислить, сходится ли ряд 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . и вычислить сумму.

Разложим исходный вариант:

1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = = 1 + 1 2 + 1 4 + 1 8 + . . . - 2 · 3 + 1 + 1 3 + 1 9 + . . . = = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2

Каждый ряд сходится, так как является одним из членов числовой последовательности. Согласно третьему свойству, мы можем вычислить, что исходный вариант также является сходящимся. Вычисляем сумму: Первый член ряда ∑ k = 1 ∞ 1 2 k - 1 = 1 , а знаменатель = 0 . 5 , за этим следует, ∑ k = 1 ∞ 1 2 k - 1 = 1 1 - 0 . 5 = 2 . Первый член ∑ k = 1 ∞ 1 3 k - 2 = 3 , а знаменатель убывающей числовой последовательности = 1 3 . Получаем: ∑ k = 1 ∞ 1 3 k - 2 = 3 1 - 1 3 = 9 2 .

Используем выражения, полученные выше, для того, чтобы определить сумму 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2 = 2 - 2 · 9 2 = - 7

Необходимое условие для определения, является ли ряд сходящимся

Определение 11

Если ряд ∑ k = 1 ∞ a k является сходящимся, то предел его k -ого члена = 0: lim k → + ∞ a k = 0 .

Если мы проверим любой вариант, то нужно не забывать о непременном условии. Если оно не выполняется, то ряд расходится. Если lim k → + ∞ a k ≠ 0 , то ряд расходящийся.

Следует уточнить, что условие важно, но не достаточно. Если равенство lim k → + ∞ a k = 0 выполняется, то это не гарантирует, что ∑ k = 1 ∞ a k является сходящимся.

Приведем пример. Для гармонического ряда ∑ k = 1 ∞ 1 k условие выполняется lim k → + ∞ 1 k = 0 , но ряд все равно расходится.

Пример 7

Определить сходимость ∑ n = 1 ∞ n 2 1 + n .

Проверим исходное выражение на выполнение условия lim n → + ∞ n 2 1 + n = lim n → + ∞ n 2 n 2 1 n 2 + 1 n = lim n → + ∞ 1 1 n 2 + 1 n = 1 + 0 + 0 = + ∞ ≠ 0

Предел n -ого члена не равен 0 . Мы доказали, что данный ряд расходится.

Как определить сходимость знакоположительного ряда.

Если постоянно пользоваться указанными признаками, придется постоянно вычислять пределы. Данный раздел поможет избежать сложностей во время решения примеров и задач. Для того, чтобы определить сходимость знакоположительного ряда, существует определенное условие.

Для сходимости знакоположительного ∑ k = 1 ∞ a k , a k > 0 ∀ k = 1 , 2 , 3 , . . . нужно определять ограниченную последовательность сумм.

Как сравнивать ряды

Существует несколько признаков сравнения рядов. Мы сравниваем ряд, сходимость которого предлагается определить, с тем рядом, сходимость которого известна.

Первый признак

∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные ряды. Неравенство a k ≤ b k справедливо для k = 1, 2, 3, ... Из этого следует, что из ряда ∑ k = 1 ∞ b k мы можем получить ∑ k = 1 ∞ a k . Так как ∑ k = 1 ∞ a k расходится, то ряд ∑ k = 1 ∞ b k можно определить как расходящийся.

Данное правило постоянно используется для решения уравнений и является серьезным аргументом, которое поможет определить сходимость. Сложности могут состоять в том, что подобрать подходящий пример для сравнения можно найти далеко не в каждом случае. Довольно часто ряд выбирается по принципу, согласно которому показатель k -ого члена будет равняться результату вычитания показателей степеней числителя и знаменателя k -ого члена ряда. Допустим, что a k = k 2 + 3 4 k 2 + 5 , разность будет равна 2 – 3 = - 1 . В данном случае можно определить, что для сравнения необходим ряд с k -ым членом b k = k - 1 = 1 k , который является гармоническим.

Для того, чтобы закрепить полученный материал, детально рассмотрим пару типичных вариантов.

Пример 8

Определить, каким является ряд ∑ k = 1 ∞ 1 k - 1 2 .

Так как предел = 0 lim k → + ∞ 1 k - 1 2 = 0 , мы выполнили необходимое условие. Неравенство будет справедливым 1 k < 1 k - 1 2 для k , которые являются натуральными. Из предыдущих пунктов мы узнали, что гармонический ряд ∑ k = 1 ∞ 1 k – расходящийся. Согласно первому признаку, можно доказать, что исходный вариант является расходящимся.

Пример 9

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 1 k 3 + 3 k - 1 .

В данном примере выполняется необходимое условие, так как lim k → + ∞ 1 k 3 + 3 k - 1 = 0 . Представляем в виде неравенства 1 k 3 + 3 k - 1 < 1 k 3 для любого значения k . Ряд ∑ k = 1 ∞ 1 k 3 является сходящимся, так как гармонический ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . Согласно первому признаку, мы можем сделать вывод, что числовой ряд является сходящимся.

Пример 10

Определить, является каким является ряд ∑ k = 3 ∞ 1 k ln (ln k) . lim k → + ∞ 1 k ln (ln k) = 1 + ∞ + ∞ = 0 .

В данном варианте можно отметить выполнение нужного условия. Определим ряд для сравнения. Например, ∑ k = 1 ∞ 1 k s . Чтобы определить, чему равна степень, расммотрим последовательность { ln (ln k) } , k = 3 , 4 , 5 . . . . Члены последовательности ln (ln 3) , ln (ln 4) , ln (ln 5) , . . . увеличивается до бесконечности. Проанализировав уравнение, можно отметить, что, взяв в качестве значения N = 1619 , то члены последовательности > 2 . Для данной последовательности будет справедливо неравенство 1 k ln (ln k) < 1 k 2 . Ряд ∑ k = N ∞ 1 k 2 сходится согласно первому признаку, так как ряд ∑ k = 1 ∞ 1 k 2 тоже сходящийся. Отметим, что согласно первому признаку ряд ∑ k = N ∞ 1 k ln (ln k) сходящийся. Можно сделать вывод, что ряд ∑ k = 3 ∞ 1 k ln (ln k) также сходящийся.

Второй признак

Допустим, что ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные числовые ряды.

Если lim k → + ∞ a k b k ≠ ∞ , то ряд ∑ k = 1 ∞ b k сходится, и ∑ k = 1 ∞ a k сходится также.

Если lim k → + ∞ a k b k ≠ 0 , то так как ряд ∑ k = 1 ∞ b k расходится, то ∑ k = 1 ∞ a k также расходится.

Если lim k → + ∞ a k b k ≠ ∞ и lim k → + ∞ a k b k ≠ 0 , то сходимость или расходимость ряда означает сходимость или расходимость другого.

Рассмотрим ∑ k = 1 ∞ 1 k 3 + 3 k - 1 с помощью второго признака. Для сравнения ∑ k = 1 ∞ b k возьмем сходящийся ряд ∑ k = 1 ∞ 1 k 3 . Определим предел: lim k → + ∞ a k b k = lim k → + ∞ 1 k 3 + 3 k - 1 1 k 3 = lim k → + ∞ k 3 k 3 + 3 k - 1 = 1

Согласно второму признаку можно определить, что сходящийся ряд ∑ k = 1 ∞ 1 k 3 означается, что первоначальный вариант также сходится.

Пример 11

Определить, каким является ряд ∑ n = 1 ∞ k 2 + 3 4 k 3 + 5 .

Проанализируем необходимое условие lim k → ∞ k 2 + 3 4 k 3 + 5 = 0 , которое в данном варианте выполняется. Согласно второму признаку, возьмем ряд ∑ k = 1 ∞ 1 k . Ищем предел: lim k → + ∞ k 2 + 3 4 k 3 + 5 1 k = lim k → + ∞ k 3 + 3 k 4 k 3 + 5 = 1 4

Согласно приведенным выше тезисам, расходящийся ряд влечет собой расходимость исходного ряда.

Третий признак

Рассмотрим третий признак сравнения.

Допустим, что ∑ k = 1 ∞ a k и _ ∑ k = 1 ∞ b k - знакоположительные числовые ряды. Если условие выполняется для некого номера a k + 1 a k ≤ b k + 1 b k , то сходимость данного ряда ∑ k = 1 ∞ b k означает, что ряд ∑ k = 1 ∞ a k также является сходящимся. Расходящийся ряд ∑ k = 1 ∞ a k влечет за собой расходимость ∑ k = 1 ∞ b k .

Признак Даламбера

Представим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд. Если lim k → + ∞ a k + 1 a k < 1 , то ряд является сходящимся, если lim k → + ∞ a k + 1 a k > 1 , то расходящимся.

Замечание 1

Признак Даламбера справедлив в том случае, если предел бесконечен.

Если lim k → + ∞ a k + 1 a k = - ∞ , то ряд является сходящимся, если lim k → ∞ a k + 1 a k = + ∞ , то расходящимся.

Если lim k → + ∞ a k + 1 a k = 1 , то признак Даламбера не поможет и потребуется провести еще несколько исследований.

Пример 12

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 2 k + 1 2 k по признаку Даламбера.

Необходимо проверить, выполняется ли необходимое условие сходимости. Вычислим предел, воспользовавшись правилом Лопиталя: lim k → + ∞ 2 k + 1 2 k = ∞ ∞ = lim k → + ∞ 2 k + 1 " 2 k " = lim k → + ∞ 2 2 k · ln 2 = 2 + ∞ · ln 2 = 0

Мы можем увидеть, что условие выполняется. Воспользуемся признаком Даламбера: lim k → + ∞ = lim k → + ∞ 2 (k + 1) + 1 2 k + 1 2 k + 1 2 k = 1 2 lim k → + ∞ 2 k + 3 2 k + 1 = 1 2 < 1

Ряд является сходящимся.

Пример 13

Определить, является ряд расходящимся ∑ k = 1 ∞ k k k ! .

Воспользуемся признаком Даламбера для того, чтобы определить рассходимость ряда: lim k → + ∞ a k + 1 a k = lim k → + ∞ (k + 1) k + 1 (k + 1) ! k k k ! = lim k → + ∞ (k + 1) k + 1 · k ! k k · (k + 1) ! = lim k → + ∞ (k + 1) k + 1 k k · (k + 1) = = lim k → + ∞ (k + 1) k k k = lim k → + ∞ k + 1 k k = lim k → + ∞ 1 + 1 k k = e > 1

Следовательно, ряд является расходящимся.

Радикальный признак Коши

Допустим, что ∑ k = 1 ∞ a k - это знакоположительный ряд. Если lim k → + ∞ a k k < 1 , то ряд является сходящимся, если lim k → + ∞ a k k > 1 , то расходящимся.

Замечание 2

Если lim k → + ∞ a k k = 1 , то данный признак не дает никакой информации – требуется проведение дополнительного анализа.

Данный признак может быть использован в примерах, которые легко определить. Случай будет характерным тогда, когда член числового ряда – это показательно степенное выражение.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько характерных примеров.

Пример 14

Определить, является ли знакоположительный ряд ∑ k = 1 ∞ 1 (2 k + 1) k на сходящимся.

Нужное условие считается выполненным, так как lim k → + ∞ 1 (2 k + 1) k = 1 + ∞ + ∞ = 0 .

Согласно признаку, рассмотренному выше, получаем lim k → + ∞ a k k = lim k → + ∞ 1 (2 k + 1) k k = lim k → + ∞ 1 2 k + 1 = 0 < 1 . Данный ряд является сходимым.

Пример 15

Сходится ли числовой ряд ∑ k = 1 ∞ 1 3 k · 1 + 1 k k 2 .

Используем признак, описанный в предыдущем пункте lim k → + ∞ 1 3 k · 1 + 1 k k 2 k = 1 3 · lim k → + ∞ 1 + 1 k k = e 3 < 1 , следовательно, числовой ряд сходится.

Интегральный признак Коши

Допустим, что ∑ k = 1 ∞ a k является знакоположительным рядом. Необходимо обозначить функцию непрерывного аргумента y = f (x) , которая совпадает a n = f (n) . Если y = f (x) больше нуля, не прерывается и убывает на [ a ; + ∞) , где a ≥ 1

То в случае, если несобственный интеграл ∫ a + ∞ f (x) d x является сходящимся, то рассматриваемый ряд также сходится. Если же он расходится, то в рассматриваемом примере ряд тоже расходится.

При проверке убывания функции можно использовать материал, рассмотренный на предыдущих уроках.

Пример 16

Рассмотреть пример ∑ k = 2 ∞ 1 k · ln k на сходимость.

Условие сходимости ряда считается выполненным, так как lim k → + ∞ 1 k · ln k = 1 + ∞ = 0 . Рассмотрим y = 1 x · ln x . Она больше нуля, не прерывается и убывает на [ 2 ; + ∞) . Первые два пункта доподлинно известны, а вот на третьем следует остановиться подробнее. Находим производную: y " = 1 x · ln x " = x · ln x " x · ln x 2 = ln x + x · 1 x x · ln x 2 = - ln x + 1 x · ln x 2 . Она меньше нуля на [ 2 ; + ∞) . Это доказывает тезис о том, что функция является убывающей.

Собственно, функция y = 1 x · ln x соответствует признакам принципа, который мы рассматривали выше. Воспользуемся им: ∫ 2 + ∞ d x x · ln x = lim A → + ∞ ∫ 2 A d (ln x) ln x = lim A → + ∞ ln (ln x) 2 A = = lim A → + ∞ (ln (ln A) - ln (ln 2)) = ln (ln (+ ∞)) - ln (ln 2) = + ∞

Согласно полученным результатам, исходный пример расходится, так как несобственный интеграл является расходящимся.

Пример 17

Докажите сходимость ряда ∑ k = 1 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 .

Так как lim k → + ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 = 1 + ∞ = 0 , то условие считается выполненным.

Начиная с k = 4 , верное выражение 1 (10 k - 9) (ln (5 k + 8)) 3 < 1 (5 k + 8) (ln (5 k + 8)) 3 .

Если ряд ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 будет считаться сходящимся, то, согласно одному из принципов сравнения, ряд ∑ k = 4 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 также будет считаться сходящимся. Таким образом, мы сможет определить, что исходное выражение также является сходящимся.

Перейдем к доказательству ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 .

Так как функция y = 1 5 x + 8 (ln (5 x + 8)) 3 больше нуля, не прерывается и убывает на [ 4 ; + ∞) . Используем признак, описанный в предыдущем пункте:

∫ 4 + ∞ d x (5 x + 8) (l n (5 x + 8)) 3 = lim A → + ∞ ∫ 4 A d x (5 x + 8) (ln (5 x + 8)) 3 = = 1 5 · lim A → + ∞ ∫ 4 A d (ln (5 x + 8) (ln (5 x + 8)) 3 = - 1 10 · lim A → + ∞ 1 (ln (5 x + 8)) 2 | 4 A = = - 1 10 · lim A → + ∞ 1 (ln (5 · A + 8)) 2 - 1 (ln (5 · 4 + 8)) 2 = = - 1 10 · 1 + ∞ - 1 (ln 28) 2 = 1 10 · ln 28 2

В полученном сходящемся ряде, ∫ 4 + ∞ d x (5 x + 8) (ln (5 x + 8)) 3 , можно определить, что ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 также сходится.

Признак Раабе

Допустим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд.

Если lim k → + ∞ k · a k a k + 1 < 1 , то ряд расходится, если lim k → + ∞ k · a k a k + 1 - 1 > 1 , то сходится.

Данный способ определения можно использовать в том случае, если описанные выше техники не дают видимых результатов.

Исследование на абсолютную сходимость

Для исследования берем ∑ k = 1 ∞ b k . Используем знакоположительный ∑ k = 1 ∞ b k . Мы можем использовать любой из подходящих признаков, которые мы описывали выше. Если ряд ∑ k = 1 ∞ b k сходится, то исходный ряд является абсолютно сходящимся.

Пример 18

Исследовать ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 на сходимость ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 = ∑ k = 1 ∞ 1 3 k 3 + 2 k - 1 .

Условие выполняется lim k → + ∞ 1 3 k 3 + 2 k - 1 = 1 + ∞ = 0 . Используем ∑ k = 1 ∞ 1 k 3 2 и воспользуемся вторым признаком: lim k → + ∞ 1 3 k 3 + 2 k - 1 1 k 3 2 = 1 3 .

Ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 сходится. Исходный ряд также абсолютно сходящийся.

Расходимость знакопеременных рядов

Если ряд ∑ k = 1 ∞ b k – расходящийся, то соответствующий знакопеременный ряд ∑ k = 1 ∞ b k либо расходящийся, либо условно сходящийся.

Лишь признак Даламбера и радикальный признак Коши помогут сделать выводы о ∑ k = 1 ∞ b k по расходимости из модулей ∑ k = 1 ∞ b k . Ряд ∑ k = 1 ∞ b k также расходится, если не выполняется необходимое условие сходимости, то есть, если lim k → ∞ + b k ≠ 0 .

Пример 19

Проверить расходимость 1 7 , 2 7 2 , - 6 7 3 , 24 7 4 , 120 7 5 - 720 7 6 , . . . .

Модуль k -ого члена представлен как b k = k ! 7 k .

Исследуем ряд ∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k на сходимость по признаку Даламбера: lim k → + ∞ b k + 1 b k = lim k → + ∞ (k + 1) ! 7 k + 1 k ! 7 k = 1 7 · lim k → + ∞ (k + 1) = + ∞ .

∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k расходится так же, как и исходный вариант.

Пример 20

Является ли ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) сходящимся.

Рассмотрим на необходимое условие lim k → + ∞ b k = lim k → + ∞ k 2 + 1 ln (k + 1) = ∞ ∞ = lim k → + ∞ = k 2 + 1 " (ln (k + 1)) " = = lim k → + ∞ 2 k 1 k + 1 = lim k → + ∞ 2 k (k + 1) = + ∞ . Условие не выполнено, поэтому ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) ряд расходящийся. Предел был вычислен по правилу Лопиталя.

Признаки для условной сходимости

Признак Лейбница

Определение 12

Если величины членов знакочередующегося ряда убывают b 1 > b 2 > b 3 > . . . > . . . и предел модуля = 0 при k → + ∞ , то ряд ∑ k = 1 ∞ b k сходится.

Пример 17

Рассмотреть ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) на сходимость.

Ряд представлен как ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) . Нужное условие выполняется lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 . Рассмотрим ∑ k = 1 ∞ 1 k по второму признаку сравнения lim k → + ∞ 2 k + 1 5 k (k + 1) 1 k = lim k → + ∞ 2 k + 1 5 (k + 1) = 2 5

Получаем, что ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) расходится. Ряд ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) сходится по признаку Лейбница: последовательность 2 · 1 + 1 5 · 1 · 1 1 + 1 = 3 10 , 2 · 2 + 1 5 · 2 · (2 + 1) = 5 30 , 2 · 3 + 1 5 · 3 · 3 + 1 , . . . убывает и lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 .

Ряд условно сходится.

Признак Абеля-Дирихле

Определение 13

∑ k = 1 + ∞ u k · v k сходится в том случае, если { u k } не возрастает, а последовательность ∑ k = 1 + ∞ v k ограничена.

Пример 17

Исследуйте 1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . на сходимость.

Представим

1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . = 1 · 1 + 1 2 · (- 3) + 1 3 · 2 + 1 4 · 1 + 1 5 · (- 3) + 1 6 · = ∑ k = 1 ∞ u k · v k

где { u k } = 1 , 1 2 , 1 3 , . . . - невозрастающая, а последовательность { v k } = 1 , - 3 , 2 , 1 , - 3 , 2 , . . . ограничена { S k } = 1 , - 2 , 0 , 1 , - 2 , 0 , . . . . Ряд сходится.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Лучшие статьи по теме