Для школьников и родителей
  • Главная
  • Учат в школе
  • Ионы примеры веществ. Типы химических связей: ионная, ковалентная, металлическая. Механизм ионной связи

Ионы примеры веществ. Типы химических связей: ионная, ковалентная, металлическая. Механизм ионной связи

В результате взаимного электростатического притяжения между молекулами и атомами химических элементов может возникнуть ионная связь. Примеры таких соединений можно наблюдать в различных реакциях гальванических батарей, даже простая поваренная соль имеет соединение данного типа. О том, что такое ионная связь, чем она отличается от ковалентной, рассказывается в этой статье.

Простые и сложные ионы

В ионной связи участвуют и отдельные атомы, и различные их соединения. Все участники такой связи имеют электрический заряд и удерживаются в соединении благодаря электростатическим силам. Различают ионы простые, такие как Na + , K + , которые относятся к катионам; F - , Cl - - относящиеся к анионам. Также бывают ионы сложные, состоящие из двух и более атомов. Примеры ионной химической связи на базе сложных ионов - анионы OH - , NO 3 - , катион NH 4 + . Простые ионы с положительным зарядом образуются из атомов с низким ионизационным потенциалом - обычно это металлы главных подгрупп I-II группы. Простые ионы, имеющие отрицательный заряд, в большинстве случаев являются типичными неметаллами.

Ковалентная и ионная связь

Примеры систем, созданных из двух частиц, обладающих противоположными электрическими зарядами, показывают, что в таком случае всегда возникает электрическое поле. Это означает, что электрически активные ионы могут притягивать и другие ионы в различных направлениях. Благодаря силам электрического притяжения и существует ионная связь. Примеры таких соединений показывают два принципиальных различия между ионной и ковалентной связью.

  1. Электрическое поле иона уменьшается в зависимости от расстояния в любом направлении. Поэтому степень взаимодействия между ионами не зависит от того, как в пространстве эти ионы расположены. Из этих наблюдений можно сделать вывод, что ионная связь скалярна, то есть не обладает направленностью.
  2. Два иона, обладающие различными зарядами, притягивают не только друг друга, но и соседние заряженные ионы - к определенному иону могут присоединиться различное число заряженных частиц противоположного знака. В этом заключается еще одно различие между ковалентной и ионной связью: последняя не имеет насыщаемости. Число присоединенных ионов определяется линейными размерами заряженных частиц, а также тем принципом, что силы притяжения ионов противоположных зарядов должны преобладать над силами отталкивания, которые действуют между одинаково заряженными частицами.

Ассоциации

Поскольку насыщаемость и направленность у ионов отсутствуют, то они склонны соединяться друг с другом в различных комбинациях. Это свойство ученые назвали ассоциацией. При высоких температурах ассоциация невелика: кинетическая энергия молекул и ионов довольно высока, и в газовом состоянии вещества с ионным видом связи находятся в виде отдельных молекул. Но средние и низкие температуры делают возможным образование различных структурных соединений, за образование которых несет ответственность ионный тип связи. Примеры строения веществ в жидком и твердом состоянии показаны на рисунках.

Как можно видеть, ионная связь создает кристаллическую решетку, в которой каждый элемент окружен ионами с противоположным знаком заряда. При этом такое вещество обладает одинаковыми характеристиками в различных направлениях.

Поляризация

Как известно, при присоединении электрона к атому неметалла выделяется определенное количество энергии. Однако присоединение второго электрона требует уже затрат энергии, поэтому образование простых многозарядных анионов становится энергетически убыточным. Вместе с тем такие элементы, как SO 4 2- , СО 3 2- показывают, что сложные многозарядные отрицательные ионы могут быть энергетически устойчивыми, так как электроны в соединении распределены таким образом, чтобы заряд каждого атома был не больше заряда самого электрона. Такие правила дикутует стандартная ионная связь.

Примеры типичных элементов, которые встречаются на каждом шагу (NaCl, CsF), не показывают полного разделения положительного и отрицательного зарядов. Например, в кристалле поваренной соли эффективный отрицательный заряд будет составлять всего около 93 % полного заряда электрона. Данный эффект наблюдается и в других соединениях. Такое неполное разделение зарядов называется поляризацией.

Причины поляризации

Причиной поляризации всегда является электрическое поле. Внешний слой электронов испытывает наибольшее смещение при поляризации. Однако следует заметить, что различные ионы имеют неодинаковую поляризуемость: чем слабее связь внешнего электрона с ядром, тем легче поляризуется весь ион и тем сильнее деформируется электронное облако.

Поляризация ионов оказывает известное действие на соединения, образующие ионную связь. Примеры химических реакций показывают, что наибольшим поляризующим действием обладает ион водорода Н + , поскольку он обладает наименьшими размерами и полным отсутствием электронного облака.

Ионная связь

Теория химической связи занимает важнейшее место в современной химии . Она объясняет, почему атомы объединяются в химические частицы , и позволяет сравнивать устойчивость этих частиц . Используя теорию химической связи , можно предсказать состав и строение различных соединений . Понятие о разрыве одних химических связей и образовании других лежит в основе современных представлений о превращениях веществ в ходе химических реакций .

Химическая связь - это взаимодействие атомов , обусловливающее устойчивость химической частицы или кристалла как целого . Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами : катионами и анионами, ядрами и электронами . При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами . На некотором расстоянии эти силы уравновешивают друг друга , и образуется устойчивая химическая частица .

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами .

В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

1 Взаимодействие ионов

Если атом теряет один или несколько электронов , то он превращается в положительный ион - катион (в переводе с греческого – «идущий вниз »). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх ). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу . При этом возникает химическая связь , и образуются химические соединения . Такой тип химической связи называется ионной связью :

2 Определение Ионной связи

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами .

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором . Атом щелочного металла легко теряет электрон , а атом галогена - приобретает . В результате этого возникает катион натрия и хлорид-ион . Они образуют соединение за счет электростатического притяжения между ними .

Взаимодействие между катионами и анионами не зависит от направления , поэтому о ионной связи говорят как о ненаправленной . Каждый катион может притягивать любое число анионов , и наоборот . Вот почему ионная связь является ненасыщенной . Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла . Поэтому "молекулой " ионного соединения следует считать весь кристалл .

Для возникновения ионной связи необходимо , чтобы сумма значений энергии ионизации E i (для образования катиона) и сродства к электрону A e (для образования аниона) должна быть энергетически выгодной . Это ограничивает образование ионной связи атомами активных металлов (элементы IA- и IIA-групп, некоторые элементы IIIA-группы и некоторые переходные элементы) и активных неметаллов (галогены, халькогены, азот).

Идеальной ионной связи практически не существует . Даже в тех соединениях, которые обычно относят к ионным , не происходит полного перехода электронов от одного атома к другому ; электроны частично остаются в общем пользовании . Так, связь во фториде лития на 80% ионная , а на 20% - ковалентная . Поэтому правильнее говорить о степени ионности (полярности ) ковалентной химической связи . Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной . При большей разности соединение можно считать ионным .

Ионной моделью химической связи широко пользуются для описания свойств многих веществ , в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами . Это обусловлено простотой описания таких соединений : считают, что они построены из несжимаемых заряженных сфер , отвечающих катионам и анионам . При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Ионная связь - прочная химическая связь, образующаяся между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей , при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью. Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.

Ионная связь - крайний случай поляризации ковалентной полярной связи . Образуется между типичными металлом и неметаллом . При этом электроны у металла полностью переходят к неметаллу . Образуются ионы.

Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу) , то общая электронная пара полностью переходит к атому с большей ЭО . Результатом этого является образование соединения противоположно заряженных ионов :

Между образовавшимися ионами возникает электростатическое притяжение , которое называется ионной связью . Вернее, такой взгляд удобен . На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде , обычно на деле связь носит частично ионный , и частично ковалентный характер . В то же время связь сложных молекулярных ионов часто может считаться чисто ионной . Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости . Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

3 Ионные радиусы

В простой электростатической модели ионной связи используется понятие ионных радиусов . Сумма радиусов соседних катиона и аниона должна равняться соответстующему межъядерному расстоянию :

r 0 = r + + r

При этом остается неясным , где следует провести границу между катионом и анионом . Сегодня известно , что чисто ионной связи не существует , так как всегда имеется некоторое перекрывание электронных облаков . Для вычисления радиусов ионов используют методы исследования , которые позволяют определять электронную плотность между двумя атомами . Межъядерное расстояние делят в точке , где электронная плотность минимальна .

Размеры иона зависят от многих факторов . При постоянном заряде иона с ростом порядкового номера (а, следовательно, заряда ядра ) ионный радиус уменьшается . Это особенно хорошо заметно в ряду лантаноидов , где ионные радиусы монотонно меняются от 117 пм для (La 3+) до 100 пм (Lu 3+) при координационном числе 6 . Этот эффект носит название лантаноидного сжатия .

В группах элементов ионные радиусы в целом увеличиваются с ростом порядкового номера . Однако для d -элементов четвертого и пятого периодов вследствие лантаноидного сжатия может произойти даже уменьшение ионного радиуса (например, от 73 пм у Zr 4+ до 72 пм у Hf 4+ при координационном числе 4).

В периоде происходит заметно уменьшение ионного радиуса , связанное с усилением притяжения электронов к ядру при одновременном росте заряда ядра и заряда самого иона : 116 пм у Na + , 86 пм у Mg 2+ , 68 пм у Al 3+ (координационное число 6). По этой же причине увеличение заряда иона приводит к уменьшению ионного радиуса для одного элемента : Fe 2+ 77 пм, Fe 3+ 63 пм, Fe 6+ 39 пм (координационное число 4).

Сравнение ионных радиусов можно проводить только при одинаковом координационном числе , поскольку оно оказывает влияние на размер иона из-за сил отталкивания между противоионами . Это хорошо видно на примере иона Ag + ; его ионных радиус равен 81, 114 и 129 пм для координационных чисел 2, 4 и 6 , соответственно .

Структура идеального ионного соединения , обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов , во многом определяется соотношением ионных радиусов катионов и анионов . Это можно показать простыми геометрическими построениями.

4 Энергия ионной связи

Энергия связ и для ионного соединения - это энергия , которая выделяется при его образовании из бесконечно удаленных друг от друга газообразных противоионов . Рассмотрение только электростатических сил соответствует около 90% от общей энергии взаимодействия , которая включает также вклад неэлектростатических сил (например, отталкивание электронных оболочек ).

При возникновении ионной связи между двумя свободными ионами энергия их притяжения определяется законом Кулона :

E(прит.) = q+ q− / (4π r ε),

где q+ и q− - заряды взаимодействующих ионов , r - расстояние между ними , ε - диэлектрическая проницаемость среды .

Так как один из зарядов отрицателен , то значение энергии также будет отрицательным .

Согласно закону Кулона , на бесконечно малых расстояниях энергия притяжения должна стать бесконечно большой . Однако этого не происходит , так как ионы не являются точечными зарядами . При сближении ионов между ними возникают силы отталкивания , обусловленные взаимодействием электронных облаков . Энергия отталкивания ионов описывается уравнением Борна :

Е(отт.) = В / rn,

где В - некоторая константа , n может принимать значения от 5 до 12 (зависит от размера ионов ). Общая энергия определяется суммой энергий притяжения и отталкивания :

Е = Е(прит.) + Е(отт.)

Её значение проходит через минимум . Координаты точки минимума отвечают равновесному расстоянию r 0 и равновесной энергии взаимодействия между ионами E 0 :

E0 = q+ q− (1 - 1 / n) / (4π r0 ε)

В кристаллической решетке всегда имеет место большее число взаимодействий , чем между парой ионов . Это число определяется в первую очередь типом кристаллической решетки . Для учета всех взаимодействий (ослабевающих с увеличением расстояния) в выражение для энергии ионной кристаллической решетки вводят так называемую константу Маделунга А :

E(прит.) = A q+ q− / (4π r ε)

Значение константы Маделунга определяется только геометрией решетки и не зависит от радиуса и заряда ионов . Например, для хлорида натрия она равна 1,74756 .

5 поляризация ионов

Помимо величины заряда и радиуса важной характеристикой иона являются его поляризационные свойства . Рассмотрим этот вопрос несколько подробнее. У неполярных частиц (атомов, ионов, молекул) центры тяжести положительных и отрицательных зарядов совпадают . В электрическом поле происходит смещение электронных оболочек в направлении положительно заряженной пластины , а ядер - в направлении отрицательно заряженной пластины . Вследствие деформации частицы в ней возникает диполь , она становится полярной .

Источником электрического поля в соединениях с ионным типом связи являются сами ионы . Поэтому, говоря о поляризационных свойствах иона , необходимо различать поляризующее действие данного иона и способность его самого поляризоваться в электрическом поле .

Поляризующее действие иона будет тем большим , чем больше его силовое поле , т. е. чем больше заряд и меньше радиус иона . Поэтому в пределах подгрупп в Периодической системе элементов поляризующее действие ионов понижается сверху вниз , так как в подгруппах при постоянной величине заряда иона сверху вниз увеличивается его радиус .

Поэтому поляризующее действие ионов щелочных металлов например растет от цезия к литию , а в ряду галогенид-ионов - от I к F . В периодах поляризующее действие ионов растет слева направо вместе с увеличением заряда иона и уменьшением его радиуса .

Поляризуемость иона , способность его к деформации растут с уменьшением силового поля , т. е. с уменьшением величины заряда и увеличением радиуса . Поляризуемость анионов обычно выше , чем катионов и в ряду галогенидов растет от F к I .

На поляризационные свойства катионов оказывает влияние характер их внешней электронной оболочки . Поляризационные свойства катионов как в активном , так и в пассивном смысле при одинаковом заряде и близком радиусе растут при переходе от катионов с заполненной оболочкой к катионам с незаконченной внешней оболочкой и далее к катионам с 18-электронной оболочкой .

Например, в ряду катионов Mg 2+ , Ni 2+ , Zn 2+ поляризационные свойства усиливаются . Эта закономерность согласуется с изменением в приведенном в ряду радиуса иона и строения его электронной оболочки:

Для анионов поляризационные свойства ухудшаются в такой последовательности:

I - , Br - , Cl - , CN - , OH - , NO 3 - , F - , ClO 4 - .

Результатом поляризационного взаимодействия ионов является деформация их электронных оболочек и, как следствие этого, сокращение межионных расстояний и неполное разделение отрицательного и положительного зарядов между ионами.

Например, в кристалле хлорида натрия величина заряда на ионе натрия составляет +0,9 , а на ионе хлора - 0,9 вместо ожидаемой единицы . В молекуле KCl , находящейся в парообразном состоянии , величина зарядов на ионах калия и хлора составляет 0,83 единицы заряда , а в молекуле хлороводорода - лишь 0,17 единицы заряда.

Поляризация ионов оказывает заметное влияние на свойства соединений с ионной связью , понижая их температуры плавления и кипения , уменьшая электролитическую диссоциацию в растворах и расплавах и др .

Ионные соединения образуются при взаимодействии элементов , значительно различающихся по химическим свойствам . Чем больше удалены друг от друга элементы в периодической системе , тем в большей степени проявляется в их соединениях ионная связь . Напротив , в молекулах, образованных одинаковыми атомами или атомами элементов, близких по химическим свойствам , возникают другие типы связи . Поэтому теория ионной связи имеет ограниченное применение .

6 Влияние поляризации ионов на свойства веществ и свойства Ионной связи и ионных соединений

Представления о поляризации ионов помогают объяснить различия в свойствах многих однотипных веществ . Например, сравнение хлоридов натрия и калия с хлоридом серебра показывает, что при близких ионных радиусах

поляризуемость катиона Ag+ , имеющего 18-электронную внешнюю оболочку , выше , что приводит к увеличению прочности связи металл-хлор и меньшей растворимости хлорида серебра в воде .

Взаимная поляризация ионов облегчает разрушение кристаллов , что приводит к понижению температур плавления веществ . По этой причине температура плавления TlF (327 oС) существенно ниже , чем RbF (798 oC). Температура разложения веществ также понижатся с усилением взаимной поляризации ионов . Поэтому иодиды обычно разлагаются при более низких температурах , чем остальные галогениды , а соединения лития - термически менее устойчивы , чем соединения других щелочных элементов .

Деформируемость электронных оболочек сказывается и на оптических свойствах веществ . Чем более поляризована частица , тем ниже энергия электронных переходов . Если поляризация мала , возбуждение электронов требует более высокой энергии , что отвечает ультрафиолетовой части спектра . Такие вещества обычно бесцветны . В случае сильной поляризации ионов возбуждение электронов происходит при поглощении электромагнитного излучения видимой области спектра . Поэтому некоторые вещества , образованные бесцветными ионами, окрашены .

Характеристикой ионных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.) . Это происходит из-за заряженности частей молекулы . При этом диполи растворителя притягиваются к заряженным концам молекулы , и, в результате Броуновского движения , «растаскивают » молекулу вещества на части и окружают их , не давая соединиться вновь . В итоге получаются ионы окружённые диполями растворителя .

При растворении подобных соединений, как правило, выделяется энергия , так как суммарная энергия образованных связей растворитель-ион больше энергии связи анион-катион . Исключения составляют многие соли азотной кислоты (нитраты) , которые при растворении поглощают тепло (растворы охлаждаются ). Последний факт объясняется на основе законов, которые рассматриваются в физической химии .

7 Кристаллическая решётка

Ионные соединения (например, хлорид натрия NaCl) - твердые и тугоплавкие от того, что между зарядами их ионов ("+" и "–") существуют мощные силы электростатического притяжения .

Отрицательно заряженный ион хлора притягивает не только "свой " ион Na+ , но и другие ионы натрия вокруг себя . Это приводит к тому , что около любого из ионов находится не один ион с противоположным знаком , а несколько (рис. 1).

Рис. 1. Строение кристалла поваренной соли NaCl .

Фактически, около каждого иона хлора располагается 6 ионов натрия , а около каждого иона натрия - 6 ионов хлора .

Такая упорядоченная упаковка ионов называется ионным кристаллом . Если в кристалле выделить отдельный атом хлора , то среди окружающих его атомов натрия уже невозможно найти тот , с которым хлор вступал в реакцию . Притянутые друг к другу электростатическими силами , ионы крайне неохотно меняют свое местоположение под влиянием внешнего усилия или повышения температуры . Но если температура очень велика (примерно 1500°C ), то NaCl испаряется , образуя двухатомные молекулы . Это говорит о том, что силы ковалентного связывания никогда не выключаются полностью .

Ионные кристаллы отличаются высокими темпертурами плавления , обычно значительной шириной запрещенной зоны , обладают ионной проводимостью при высоких температурах и рядом специфических оптических свойств (например, прозрачностью в ближней области ИК спектра ). Они могут быть построены как из одноатомных , так и из многоатомных ионов . Пример ионных кристаллов первого типа - кристаллы галогенидов щелочных и щелочно-земельных металлов ; анионы располагаются по закону плотнейшей шаровой упаковки или плотной шаровой кладки , катионы занимают соответствующие пустоты . Наиболее характерные структуры такого типа - NaCl, CsCl, CaF2. Ионные кристаллы второго типа построены из одноатомных катионов тех же металлов и конечных или бесконечных анионных фрагментов . Конечные анионы (кислотные остатки) - NO3-, SO42-, СО32- и др . Кислотные остатки могут соединяться в бесконечные цепи , слои или образовывать трехмерный каркас , в полостях которого располагаются катионы , как, например, в кристаллических структурах силикатов . Для ионных кристаллов можно рассчитать энергию кристаллической структуры U (см. табл.), приближенно равную энтальпии сублимации ; результаты хорошо согласуются с экспериментальными данными . Согласно уравнению Борна-Майера , для кристалла , состоящего из формально однозарядных ионов :

U = -A/R + Ве-R/r - C/R6 - D/R8 + E0

(R - кратчайшее межионное расстояние , А - константа Маделунга , зависящая от геометрии структуры , В и r - параметры , описывающие отталкивание между частицами , C/R6 и D/R8 характеризуют соответствующие диполь-дипольное и диполь-квадрупольное взаимодействие ионов , E 0 - энергия нулевых колебаний , е - заряд электрона ). С укрупнением катиона возрастает вклад диполь-дипольных взаимодействий .

Ионная связь

Теория химической связи занимает важнейшее место в современной химии . Она объясняет, почему атомы объединяются в химические частицы , и позволяет сравнивать устойчивость этих частиц . Используя теорию химической связи , можно предсказать состав и строение различных соединений . Понятие о разрыве одних химических связей и образовании других лежит в основе современных представлений о превращениях веществ в ходе химических реакций .

Химическая связь - это взаимодействие атомов , обусловливающее устойчивость химической частицы или кристалла как целого . Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами : катионами и анионами, ядрами и электронами . При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами . На некотором расстоянии эти силы уравновешивают друг друга , и образуется устойчивая химическая частица .

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами .

В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

1 Взаимодействие ионов

Если атом теряет один или несколько электронов , то он превращается в положительный ион - катион (в переводе с греческого – «идущий вниз »). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх ). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу . При этом возникает химическая связь , и образуются химические соединения . Такой тип химической связи называется ионной связью :

2 Определение Ионной связи

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами .

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором . Атом щелочного металла легко теряет электрон , а атом галогена - приобретает . В результате этого возникает катион натрия и хлорид-ион . Они образуют соединение за счет электростатического притяжения между ними .

Взаимодействие между катионами и анионами не зависит от направления , поэтому о ионной связи говорят как о ненаправленной . Каждый катион может притягивать любое число анионов , и наоборот . Вот почему ионная связь является ненасыщенной . Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла . Поэтому "молекулой " ионного соединения следует считать весь кристалл .

Для возникновения ионной связи необходимо , чтобы сумма значений энергии ионизации E i (для образования катиона) и сродства к электрону A e (для образования аниона) должна быть энергетически выгодной . Это ограничивает образование ионной связи атомами активных металлов (элементы IA- и IIA-групп, некоторые элементы IIIA-группы и некоторые переходные элементы) и активных неметаллов (галогены, халькогены, азот).

Идеальной ионной связи практически не существует . Даже в тех соединениях, которые обычно относят к ионным , не происходит полного перехода электронов от одного атома к другому ; электроны частично остаются в общем пользовании . Так, связь во фториде лития на 80% ионная , а на 20% - ковалентная . Поэтому правильнее говорить о степени ионности (полярности ) ковалентной химической связи . Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной . При большей разности соединение можно считать ионным .

Ионной моделью химической связи широко пользуются для описания свойств многих веществ , в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами . Это обусловлено простотой описания таких соединений : считают, что они построены из несжимаемых заряженных сфер , отвечающих катионам и анионам . При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Ионная связь - прочная химическая связь, образующаяся между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей , при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью. Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.

Ионная связь - крайний случай поляризации ковалентной полярной связи . Образуется между типичными металлом и неметаллом . При этом электроны у металла полностью переходят к неметаллу . Образуются ионы.

Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу) , то общая электронная пара полностью переходит к атому с большей ЭО . Результатом этого является образование соединения противоположно заряженных ионов :

Между образовавшимися ионами возникает электростатическое притяжение , которое называется ионной связью . Вернее, такой взгляд удобен . На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде , обычно на деле связь носит частично ионный , и частично ковалентный характер . В то же время связь сложных молекулярных ионов часто может считаться чисто ионной . Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости . Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

3 Ионные радиусы

В простой электростатической модели ионной связи используется понятие ионных радиусов . Сумма радиусов соседних катиона и аниона должна равняться соответстующему межъядерному расстоянию :

r 0 = r + + r

При этом остается неясным , где следует провести границу между катионом и анионом . Сегодня известно , что чисто ионной связи не существует , так как всегда имеется некоторое перекрывание электронных облаков . Для вычисления радиусов ионов используют методы исследования , которые позволяют определять электронную плотность между двумя атомами . Межъядерное расстояние делят в точке , где электронная плотность минимальна .

Размеры иона зависят от многих факторов . При постоянном заряде иона с ростом порядкового номера (а, следовательно, заряда ядра ) ионный радиус уменьшается . Это особенно хорошо заметно в ряду лантаноидов , где ионные радиусы монотонно меняются от 117 пм для (La 3+) до 100 пм (Lu 3+) при координационном числе 6 . Этот эффект носит название лантаноидного сжатия .

В группах элементов ионные радиусы в целом увеличиваются с ростом порядкового номера . Однако для d -элементов четвертого и пятого периодов вследствие лантаноидного сжатия может произойти даже уменьшение ионного радиуса (например, от 73 пм у Zr 4+ до 72 пм у Hf 4+ при координационном числе 4).

В периоде происходит заметно уменьшение ионного радиуса , связанное с усилением притяжения электронов к ядру при одновременном росте заряда ядра и заряда самого иона : 116 пм у Na + , 86 пм у Mg 2+ , 68 пм у Al 3+ (координационное число 6). По этой же причине увеличение заряда иона приводит к уменьшению ионного радиуса для одного элемента : Fe 2+ 77 пм, Fe 3+ 63 пм, Fe 6+ 39 пм (координационное число 4).

Сравнение ионных радиусов можно проводить только при одинаковом координационном числе , поскольку оно оказывает влияние на размер иона из-за сил отталкивания между противоионами . Это хорошо видно на примере иона Ag + ; его ионных радиус равен 81, 114 и 129 пм для координационных чисел 2, 4 и 6 , соответственно .

Структура идеального ионного соединения , обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов , во многом определяется соотношением ионных радиусов катионов и анионов . Это можно показать простыми геометрическими построениями.

4 Энергия ионной связи

Энергия связ и для ионного соединения - это энергия , которая выделяется при его образовании из бесконечно удаленных друг от друга газообразных противоионов . Рассмотрение только электростатических сил соответствует около 90% от общей энергии взаимодействия , которая включает также вклад неэлектростатических сил (например, отталкивание электронных оболочек ).

Ионная связь − химическая связь, образованная в результате взаимного электростатического притяжения противоположно заряженных ионов, при котором устойчивое состояние достигается путем полного перехода общей электронной плотности к атому более электроотрицательного элемента.

Чисто ионная связь есть предельный случай ковалентной связи.

На практике полный переход электронов от одного атома к другому атому по связи не реализуется, поскольку каждый элемент имеет большую или меньшую (но не нулевую) ЭО, и любая химическая связь будет в некоторой степени ковалентной.

Такая связь возникает в случае большой разности ЭО атомов, например, между катионами s -металлов первой и второй групп периодической системы и анионами неметаллов VIА и VIIА групп (LiF, NaCl, CsF и др.).

В отличие от ковалентной связи, ионная связь не обладает направленностью . Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т.е. убывает с расстоянием по одному и тому же закону в любом направлении. Поэтому взаимодействие между ионами независимо от направления.

Взаимодействие двух ионов противоположного знака не может привести к полной взаимной компенсации их силовых полей. В силу этого у них сохраняется способность притягивать ионы противоположного знака и по другим направлениям. Следовательно, в отличие от ковалентной связи, ионная связь характеризуется также ненасыщаемостью .

Отсутствие у ионной связи направленности и насыщаемости обуславливает склонность ионных молекул к ассоциации. Все ионные соединения в твердом состоянии имеют ионную кристаллическую решетку, в которой каждый ион окружен несколькими ионами противоположного знака. При этом все связи данного иона с соседними ионами равноценны.

Металлическая связь

Металлы характеризуются рядом особых свойств: электро- и теплопроводностью, характерным металлическим блеском, ковкостью, высокой пластичностью, большой прочностью. Эти специфические свойства металлов можно объяснить особым типом химической связи, получившей название металлической .



Металлическая связь – результат перекрывания делокализованных орбиталей атомов, сближающихся между собой в кристаллической решетке металла.

У большинства металлов на внешнем электронном уровне имеется значительное число вакантных орбиталей и малое число электронов.

Поэтому энергетически более выгодно, чтобы электроны не были локализованы, а принадлежали всему атому металла. В узлах решетки металла находятся положительно заряженные ионы, которые погружены в электронный «газ», распределенный по всему металлу:

Me ↔ Me n + + n .

Между положительно заряженными ионами металла (Me n +) и нелокализованными электронами (n ) существует электростатическое взаимодействие, обеспечивающее устойчивость вещества. Энергия этого взаимодействия является промежуточной между энергиями ковалентных и молекулярных кристаллов. Поэтому элементы с чисто металлической связью (s -, и p -элементы) характеризуются относительно высокими температурами плавления и твердостью.

Наличие электронов, которые свободно могут перемещаться по объему кристалла, и обеспечивают специфические свойства ме-

Водородная связь

Водородная связьособый тип межмолекулярного взаимодействия. Атомы водорода, которые ковалентно связаны с атомом элемента, имеющего высокое значение электроотрицательности (чаще всего F, O, N, а также Cl, S и C), несут на себе относительно высокий эффективный заряд. Вследствие этого такие атомы водорода могут электростатически взаимодействовать с атомами указанных элементов.

Так, атом Н d + одной молекулы воды ориентируется и соответственно взаимодействует (что показано тремя точками) с атомом О d - другой молекулы воды:

Связи, образуемые атомом Н, находящимся между двумя атомами электроотрицательных элементов, называются водородными:

d- d+ d-

А − Н ××× В

Энергия водородной связи значительно меньше энергии обычной ковалентной связи (150–400 кДж/моль), однако этой энергии достаточно, чтобы вызвать агрегацию молекул соответствующих соединений в жидком состоянии, например, в жидком фтороводороде НF (рис. 2.14). Для соединений фтора она достигает порядка 40 кДж/моль.

Рис. 2.14. Агрегация молекул НF за счет водородных связей

Длина водородной связи также меньше длины ковалентной связи. Так, в полимере (HF) n длина связи F−H=0,092 нм, а связи F∙∙∙H= 0,14 нм. У воды длина связи O−H=0,096 нм, а связи O∙∙∙H=0,177нм.

Образование межмолекулярных водородных связей приводит к существенному изменению свойств веществ: повышению вязкости, диэлектрической постоянной, температур кипения и плавления.

Первая из них - образование ионной связи. (Вторая - образова­ние , о ней речь пойдет ниже). При образовании ион­ной связи атом металла теряет электроны, а атом неметалла приобретает. Для примера рассмотрим электронное строение атомов натрия и хлора:

Na 1s 2 2s 2 2 p 6 3 s 1 — один электрон на внешнем уровне

Cl 1s 2 2s 2 2 p 6 3 s 2 3 p 5 — семь электронов на внешнем уровне

Если атом натрия передаст свой единственный Зs-электрон атому хлора, правило октета будет выполнено для обоих атомов. У атома хлора окажется восемь электронов на внешнем третьем слое, а у атома натрия - тоже восемь электронов на втором слое, который теперь стал внешним:

Na + 1s 2 2s 2 2 p 6

Cl — 1s 2 2s 2 2 p 6 3 s 2 3 p 6 — восемь электронов на внешнем уровне

При этом ядро атома натрия по-прежнему содержит 11 протонов, но общее число электронов уменьшилось до 10. Это означает, что число положительно заряженных частиц на одну превышает число отрицательно заряженных, поэтому общий заряд „атома” натрия равен +1.
„Атом” хлора теперь содержит 17 протонов и 18 электронов и его заряд равен -1.
Заряженные атомы, образовавшиеся в результате потери или приобретения одно или нескольких электронов, называются ионами . Положительно заряженные ионы получили название катионов , а отрицательно заряженные называются анионами .
Катионы и анионы, имея противоположные заряды, притягиваются друг к другу электростатическими силами. Это притяжение противоположно заряженных ионов и называется ионной связью . Она возникает в соединениях, образованных металлом и одним или более неметаллами. Нижеперечисленные соединения удовлетворяют этому критерию и имеют ионную природу: MgCl 2 , Fel 2, CuF, Na 2 0, Na 2 S0 4 , Zn(C 2 H 3 0 2) 2.

Есть и другой способ изображения ионных соединений:

В этих формулах точками показывают только электроны, находящиеся на внешних оболочках (валентные электроны ). Такие формулы называют формулами Льюиса в честь аме­риканского химика Г. Н. Льюиса, одного из основоположников (наряду с Л. Полингом) теории химической связи.

Перенос электронов от атома металла к атому неметалла и образова­ние ионов возможны благодаря тому, что неметаллы имеют высокую электроотрицательность, а металлы - низкую.

Из-за сильного притяжения ионов друг к другу ионные соединения в большинстве своем твердые и имеют довольно высокую температуру плавления.

Ионная связь образуется при переносе электронов от атома ме­талла к атому неметалла. Образовавшиеся при этом ионы притя­гиваются друг к другу электростатическими силами.

Лучшие статьи по теме