Для школьников и родителей
  • Главная
  • Планета Земля
  • Масса ядра гелия 3. Гелий: свойства, характеристики, применение. Греция - страна античных памятников

Масса ядра гелия 3. Гелий: свойства, характеристики, применение. Греция - страна античных памятников

«Мы говорим сейчас о термоядерной энергетике будущего и новом экологическом типе топлива, которое нельзя добыть на Земле. Речь идет о промышленном освоении Луны для добычи гелия-3». Это заявление главы ракетно-космической корпорации «Энергия» Николая Севастьянова, если и не потрясло воображение законопослушных россиян (им сейчас, как раз, накануне нового отопительного сезона только с гелием-3 разбираться), то уж воображение специалистов и людей заинтересованных не оставило равнодушным.

Оно и понятно: при, мягко говоря, не блестящем состоянии дел в отечественной аэрокосмической отрасли (космический бюджет России в 30 раз меньше, чем в США и в 2 раза меньше, чем в Индии; с 1989 по 2004-й годы мы запустили всего 3 исследовательских КА), вдруг, вот так, ни больше, ни меньше – россияне будут добывать гелий-3 на Луне! Напомню, что, теоретически, этот легкий изотоп гелия способен вступать в термоядерную реакцию с дейтерием. Соответственно, термояд многие ученые считают потенциально безграничным источником дешевой энергии. Однако проблемка есть: гелий-3 составляет менее одной миллионной доли от общего количества гелия на Земле. А вот в лунном грунте этот легкий изотоп содержится в изобилии: по оценке академика Эрика Галимова – около 500 млн. тонн...

Говорят, в свое время в США перед входом в Диснейленд висел огромный плакат: «Мы и наша страна можем все, единственное, что нас лимитирует, это границы нашего воображения». Все это было недалеко от истины: быстрый и эффективный атомный проект, фантастически успешная лунная программа, стратегическая оборонная инициатива (СОИ), вконец доконавшая советскую экономику. ...

По существу, одной из главных функций государства, особенно в XX веке, было как раз формулирование перед научным сообществом задач на грани воображения. Это касается и советского государства: электрификация, индустриализация, создание атомной бомбы, первый спутник, поворот рек┘ Кстати, и у нас был свой «плакат» перед Диснейлендом – «Мы рождены, чтоб сказку сделать былью!»

«Я просто думаю, что есть дефицит в какой-то крупной технологической задаче, – подчеркнул в беседе со мной доктор физико-математических наук, ученый секретарь Института космических исследований РАН Александр Захаров. – Может быть, из-за этого и возникли в последнее время все эти разговоры о добыче на Луне гелия-3 для термоядерной энергетики. Если Луна – источник полезных ископаемых, и оттуда везти этот гелий-3, а на Земле не хватает энергии┘ Все это понятно, звучит очень красиво. И под это легко, может быть, уговорить влиятельных людей выделить деньги. Я думаю, что это так».

Но все дело в том, что сейчас на Земле нет технологии – и в ближайшие, как минимум, 50 лет не предвидится ее появления, – сжигания гелия-3 в термоядерной реакции. Нет даже эскизного проекта такого реактора. Строящийся сейчас во Франции международный термоядерный реактор ITER проектируется на «сжигание» изотопов водорода – дейтерия и трития. Расчетная температура «поджига» термоядерной реакции – 100–200 млн. градусов. Для использования гелия-3 температура должна быть на порядок-два выше.

Значит, руководитель крупнейшей в России ракетно-космической корпорации Николай Севастьянов, извините за выражение, пудрит нам мозги своим гелием-3? Не похоже. Зачем!?

«Космическая отрасль, естественно, заинтересована в таком крупном и дорогостоящем проекте, – считает Александр Захаров. – Но с точки зрения его практического использования, абсолютно очевидно, что это преждевременно».

Чтобы реализовать проект «гелий-3» нужно создавать специальную программу дополнительных исследований Луны, запускать целую эскадру космических аппаратов, решать вопросы с добычей гелия-3, его переработкой┘ Это разорит страну почище всякой СОИ.

«Я не хочу сказать, что Луна с научной точки зрения полностью закрыта – там остались и научные задачи, – подчеркивает Александр Захаров. – Но, как говорится, этим надо заниматься step by step, не забываю о других научных задачах. А то мы как-то шарахаемся: как только американцы объявили о программе пилотируемого полета на Марс – и сразу мы заявляем, что тоже готовы этим заниматься. Услышали про лунные программы – давайте тоже этим заниматься┘ У нас нет обдуманной, взвешенной, стратегической национальной задачи».

Вот, опять вернулись к тому, с чего начали, – к стратегической национальной задаче. Беда в том, что в отличие от американцев мы лимитированы не столько своим воображением – с этим-то, как показывает заявление Николая Севастьянова, у нас все в порядке. Но вот на программу «гелий-3» (условно назовем ее так), по самым скромным расчетам, потребуется 5 млрд. долл. на пять лет исследований.

С чисто научной точки зрения, в проблеме термояда на основе ТОКАМАКов, даже несмотря на принятое решение о строительстве международного экспериментального реактора ITER, наметился некий застой. (Впрочем, это тема для отдельного разговора.) Как мне кажется, проблема гелия-3 для некоторой части влиятельного термоядерного лобби – новая ниша для реанимации и реализации профессиональных амбиций.

Мало того – и это уж совсем сенсационная вещь, и только поэтому я не начал с нее свою статью, - как нам сообщил эксперт из аэрокосмической отрасли, на российский проект добычи легкого изотопа гелия на Луне выделен┘ 1 млрд. долларов! Деньги эти, якобы, имеют американское происхождение.

Несмотря на всю замысловатость подобной комбинации, концы с концами в ней сходятся вполне успешно. Чтобы добиться выделения 104-х млрд. долл. на объявленную недавно программу создания лунной базы, Национальному агентству США по аэронавтике и космическим исследованиям надо было показать, что «стратегические конкуренты» тоже не дремлют. То есть, «российский» миллиард - это, своего рода, накладные расходы NASA... Отсюда и необъяснимый рациональными мотивами всплеск интереса к добыче гелия-3 в России.

Если это действительно так, то лишний раз нам всем придется убедиться в справедливости формулы, напечатанной лет десять назад в журнале Physics Today. Вот она: «Ученые – это не бескорыстные искатели истины, а скорее участники острой конкурентной борьбы за научное влияние, победители которой срывают банк».

Гелий-три. Странное и непонятное словосочетание. Тем не менее чем дальше, тем больше мы будем слышать его. Потому что, по мнению специалистов, именно гелий-три спасет наш мир от надвигающегося энергетического кризиса. И в этом предприятии активнейшая роль отводится России.

Луна

Перспективная термоядерная энергетика, использующая в качестве основы реакцию синтеза дейтерий-тритий, хотя и более безопасна, чем энергетика деления ядра атома, которая используется на современных АЭС, все же имеет ряд существенных недостатков.

  • Во-первых , при этой реакции выделяется куда большее (на порядок!) число высокоэнергетичных нейтронов. Столь интенсивного нейтронного потока ни один из известных материалов не может выдержать свыше шести лет - при том, что имеет смысл делать реактор с ресурсом как минимум в 30 лет. Следовательно, первую стенку тритиевого термоядерного реактора будет необходимо заменять - а это очень сложная и дорогостоящая процедура, связанная к тому же с остановкой реактора на довольно длительный срок.
  • Во-вторых , от мощного нейтронного излучения необходимо экранировать магнитную систему реактора, что усложняет и, соответственно, удорожает конструкцию.
  • В-третьих , многие элементы конструкции тритиевого реактора после окончания эксплуатации будут высокоактивными и потребуют захоронения на длительный срок в специально созданных для этого хранилищах.

В случае же использования в термоядерном реакторе дейтерия с изотопом гелия-3 вместо трития большинство проблем удается решить. Интенсивность нейтронного потока падает в 30 раз - соответственно, можно без труда обеспечить срок службы в 30-40 лет. После окончания эксплуатации гелиевого реактора высокоактивные отходы не образуются, а радиоактивность элементов конструкции будет так мала, что их можно захоронить буквально на городской свалке, слегка присыпав землей.

В чем же проблема? Почему мы до сих пор не используем такое выгодное термоядерное топливо?

Прежде всего, потому, что на нашей планете этого изотопа чрезвычайно мало. Рождается он на Солнце, отчего иногда называется «солнечным изотопом». Его общая масса там превышает вес нашей планеты. В окружающее пространство гелий-3 разносится солнечным ветром. Магнитное поле Земли отклоняет значительную часть этого ветра, а потому гелий-3 составляет лишь одну триллионную часть земной атмосферы - примерно 4000 т. На самой Земле его еще меньше - около 500 кг.

На Луне этого изотопа значительно больше. Там он вкрапляется в лунный грунт «реголит», по составу напоминающий обычный шлак. Речь идет об огромных - практически неисчерпаемых запасах!

Анализ шести образцов грунта, привезенных экспедициями «Аполлон», и двух образцов, доставленных советскими автоматическими станциями «Луна », показал, что в реголите, покрывающем все моря и плоскогорья Луны, содержится до 106 т гелия-3, что обеспечило бы потребности земной энергетики, даже увеличенной по сравнению с современной в несколько раз, на тысячелетие! По современным прикидкам, запасы гелия-3 на Луне на три порядка больше - 109 т.

Кроме Луны, гелий-3 можно найти в плотных атмосферах планет-гигантов, и, по теоретическим оценкам, запасы его только на Юпитере составляют 1020 т, чего хватило бы для энергетики Земли до скончания времен.

Проекты добычи гелия-3

Реголит покрывает Луну слоем толщиной в несколько метров. Реголит лунных морей богаче гелием, чем реголит плоскогорий. 1 кг гелия-3 содержится приблизительно в 100 000 т реголита.

Следовательно для того, чтобы добыть драгоценный изотоп, необходимо переработать огромное количество рассыпчатого лунного грунта.

С учетом всех особенностей технология добычи гелия-3 должна включать следующие процессы:

1. Добыча реголита.

Специальные «комбайны» будут собирать реголит с поверхностного слоя толщиною около 2 м и доставлять его на пункты переработки или перерабатывать непосредственно в процессе добычи.

2. Выделение гелия из реголита.

При нагреве реголита до 600?С выделяется (десорбируется) 75% содержащегося в реголите гелия, при нагреве до 800?С - почти весь гелий. Нагрев пыли предлагается вести в специальных печах, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами.

3. Доставка на Землю космическими кораблями многоразового использования.

При добыче гелия-3 из реголита извлекаются также многочисленные вещества: водород, вода, азот, углекислый газ, азот, метан, угарный газ, - которые могут быть полезны для поддержания лунного промышленного комплекса.

Проект первого лунного комбайна, предназначенного для переработки реголита и выделения из него изотопа гелия-3, был предложен еще группой Дж.Кульчински. В настоящее время частные американские компании разрабатывают несколько прототипов, которые, видимо, будут представлены на конкурс после того, как НАСА определится с чертами будущей экспедиции на Луну.

Понятно, что, кроме доставки комбайнов на Луну, там придется возвести хранилища, обитаемую базу (для обслуживания всего комплекса оборудования), космодром и многое другое. Считается, тем не менее, что высокие затраты на создание развитой инфраструктуры на Луне окупятся сторицей в плане того, что грядет глобальный энергетический кризис, когда от традиционных видов энергоносителей (уголь, нефть, природный газ) придется отказаться.

Главная технологическая проблема


На пути к созданию энергетики на основе гелия-3 есть одна немаловажная проблема. Дело в том, что реакцию дейтерий-гелий-3 осуществить гораздо сложнее, чем реакцию дейтерий-тритий.

В первую очередь, необычайно трудно поджечь смесь этих изотопов. Расчетная температура, при которой пойдет термоядерная реакция в дейтерий-тритиевой смеси, - 100-200 миллионов градусов. При использовании гелия-3 требуемая температура на два порядка выше. Фактически мы должны зажечь на Земле маленькое солнце.

Однако история развития ядерной энергетики (последние полвека) демонстрирует увеличение генерируемых температур на порядок в течение 10 лет. В 1990 году на европейском токамаке JET уже жгли гелий-3, при этом полученная мощность составила 140 кВт. Примерно тогда же на американском токамаке TFTR была достигнута температура, необходимая для начала реакции в дейтерий-гелиевой смеси.

Впрочем, зажечь смесь еще полдела. Минус термоядерной энергетики - сложность получения практической отдачи, ведь рабочим телом является нагретая до многих миллионов градусов плазма, которую приходится удерживать в магнитном поле.

Эксперименты по приручению плазмы проводятся уже многие десятилетия, но лишь в конце июня прошлого года в Москве представителями ряда стран было подписано соглашение о строительстве на юге Франции в городе Кадараш Международного экспериментального термоядерного реактора (ITER) - прототипа практической термоядерной электростанции. В качестве топлива ITER будет использовать дейтерий с тритием.

Термоядерный реактор на гелии-3 будет конструктивно сложнее, чем ITER, и пока его нет даже в проектах. И хотя специалисты надеются, что прототип реактора на гелии-3 появится в ближайшие 20-30 лет, пока эта технология остается чистейшей фантастикой.

Вопрос добычи гелия-3 анализировался экспертами в ходе слушаний по вопросам будущего исследования и освоения Луны, состоявшихся в апреле 2004 года в Подкомитете по космосу и аэронавтике комитета по науке палаты депутатов Конгресса США. Их вывод был однозначен: даже в отдаленном будущем добыча гелия-3 на Луне совершенно невыгодна.

Как отметил Джон Логсдон, директор Института космической политики из Вашингтона: «Космическое сообщество США не рассматривает добычу гелия-3 в качестве серьезного предлога для возвращения на Луну. Лететь туда за этим изотопом все равно что пятьсот лет назад отправить Колумба в Индию за ураном. Привезти-то он его может, и привез бы, только еще несколько сотен лет никто не знал бы, что с ним делать».

Добыча гелия-3 как национальный проект

«Мы говорим сейчас о термоядерной энергетике будущего и новом экологическом типе топлива, которое нельзя добыть на Земле. Речь идет о промышленном освоении Луны для добычи гелия-3».

Это высказывание главы ракетно-космической корпорации «Энергия» Николая Севастьянова было воспринято российскими научными обозревателями как заявка на формирование нового «национального проекта».

Ведь по сути, одной из главных функций государства, особенно в XX веке, было как раз формулирование перед обществом задач на грани воображения. Это касалось и советского государства: электрификация, индустриализация, создание атомной бомбы, первый спутник, поворот рек.

Сегодня в РФ государство пытается, но не может сформулировать задачи на грани невозможного. Государству нужно, чтобы кто-то показал ему общенациональный проект и обосновал выгоды, которые из этого проекта в теории проистекают. Программа освоения и добычи гелия-3 с Луны на Землю с целью снабжения термоядерной энергетики топливом идеально отвечает этим требованиям.

«Я просто думаю, что есть дефицит в какой-то крупной технологической задаче, - подчеркнул в интервью доктор физико-математических наук, ученый секретарь Института космических исследований РАН Александр Захаров. - Может быть, из-за этого и возникли в последнее время все эти разговоры о добыче на Луне гелия-3 для термоядерной энергетики. Если Луна - источник полезных ископаемых, и оттуда везти этот гелий-3, а на Земле не хватает энергии… Все это понятно, звучит очень красиво. И под это легко, может быть, уговорить влиятельных людей выделить деньги. Я думаю, что это так».

ГИПОТЕЗЫ, ФАКТЫ, РАССУЖДЕНИЯ

Лунный Гелий-3 - термоядерное горючее будущего.

Комментарий автора сайта: С активацией американской Лунной космической программы всё чаще приходится слышать о том, что наряду с наличием воды, на Луне находятся огромные запасы изотопа гелия-3 - топлива ядерной энергетики будущего. Так ли это, какие перспективы это сулит человечеству, нужно ли вообще нам исследовать Луну и каким образом это можно осуществить - вот только небольшой перечень вопросов, ответы на которые Вы узнаете в данной статье, являющейся главой "Гелий-3" из книги академика РАН Эрика Михайловича Галимова "Замыслы и просчёты: Фундаментальные космические исследования в России последнего двадцатилетия. Двадцать лет бесплодных усилий."

Тот факт, что Луна обогащена гелием-3, известен с тех пор, как на Землю было впервые доставлено лунное вещество. В образцах лунного грунта, привезенных американскими астронавтами в ходе экспедиций «Аполлон» и доставленных советскими автоматическими аппаратами «Луна», относительная концентрация изотопа гелия 3 Не (отношение 3 Не/ 4 Не) оказалась в тысячу раз выше, чем в земном гелии. Это - результат облучения незащищенной атмосферой поверхности Луны корпускулярным излучением Солнца. В течение миллиардов лет в поверхностный пылевидный слой (реголит) Луны внедряются атомы элементов, испускаемых Солнцем, больше всего - водород и гелий в изотопном соотношении, присущем Солнцу. Другой факт - что 3 Не является эффективным термоядерным горючим - известен был физикам ещё раньше. Однако никакого практического вывода из этих фактов в те годы не делалось. Земная энергетика обеспечивалась за счёт быстро развивающейся добычи нефти и газа. Атомная энергетика базировалась на доступном урановом сырье. Управляемый термоядерный синтез не был осуществлен даже на более простой реакции дейтерия с тритием. На Земле гелий-3 в промышленных количествах отсутствует.

В конце 80-х - начале 90-х гг. появились публикации о возможном использовании Луны в качестве источника энергии для Земли. Предлагались, например, проекты передачи на Землю собранной на поверхности Луны солнечной энергии в форме сфокусированного высокочастотного луча. Высказывалась и идея добычи и доставки лунного гелия-3. Энтузиастом этой идеи, в частности, был побывавший на Луне американский астронавт Гарольд Шмидт. Он написал серьезную книгу о возможности использования гелия-3.

Призывая вернуться к исследованиям Луны, я помимо конкретной и актуальной задачи исследования внутреннего строения Луны, постоянно упоминал в качестве задачи, которую нужно иметь в виду в качестве отдаленной перспективы, освоение ресурсов лунного гелия-3.

Я думаю, что сегодня мы не предвидим в полной мере того, что даст нам освоение Луны, и потому приступаем к этому неуверенно, робко и с задержкой. Мне не раз приходилось писать о том, что исследование Луны имеет большое значение для фундаментальной геологии. Реконструкция ранней истории Земли, возникновения на ней атмосферы, океанов и жизни, невозможна без изучения Луны. Хотя бы просто потому, что следы первых 500-600 млн. лет истории Земли полностью стерты в ее геологической летописи, а на Луне они сохранились. И потому что Луна и Земля представляют генетически единую систему.

Не исключено, что в ближайшие годы мы станем свидетелями Лунной гонки-2, победитель (или победители) которой получит в свои руки практически неисчерпаемый источник энергии. Это в свою очередь, позволит человечеству выйти на качественно новый технологический уклад, о параметрах которого мы можем только догадываться.

Что такое гелий-3?

Из школьного курса физики мы помним, что атомная масса гелия равняется четырем и этот элемент является инертным газом. Его проблематично использовать в каких-либо химических реакциях, тем более с выделением энергии. Совсем другое дело - изотоп гелия с атомной массой 3. Он способен входить в термоядерную реакцию с дейтерием (изотопом водорода с атомной массой 2) в результате чего образуется гигантская энергия за счет синтеза обычного гелия-4 с выделением протона (3 Не + D → 4 Не + p + энергия). Подобным образом из всего одного грамма гелия-3 можно получить такую же энергию, как при сжигании 15-ти тонн нефти.

Тонны гелия-3 хватит для энерговыделения на уровне 10 ГВт в течение года. Таким образом, чтобы закрыть все сегодняшние энергопотребности России, ежегодно понадобится 20 тонн гелия-3, а для всего человечества потребуется примерно 200 тонн данного изотопа в год. При этом отпадет необходимость жечь нефть и газ, запасы которых не безграничны, по последним оценкам разведанных запасов углеводородов - человечеству хватит всего на полвека. Не нужно будет эксплуатировать и достаточно опасные АЭС, что после Чернобыля и Фукусимы приобрело особую актуальность.


Где взять гелий-3?

При современном развитии технологий единственным реально доступным источником этого элемента является поверхность Луны. Сам по себе гелий-3 образуется в недрах звезд (например, нашего Солнца) в результате соединения двух атомов водорода. При этом основным продуктом данной реакции является обычный гелий-4, а изотоп-3 образуется в малых количествах. Часть его выносится солнечным ветром и равномерно распределяется по планетной системе.


На Землю гелий-3 практически не выпадает, поскольку его атомы отклоняются магнитным полем нашей планеты. Зато на планетах, у которых такое поле отсутствует, элемент осаждается в верхних слоях грунта и постепенно накапливается. Ближайшим к Земле небесным телом, у которого отсутствует магнитное поле, является Луна, поэтому именно здесь сосредоточены доступные человечеству запасы этого ценного энергоносителя.


Подтверждением тому служат не только теоретические выкладки, но и результаты эмпирических исследований. Во всех пробах лунного грунта, доставленных на Землю, был обнаружен гелий-3 в относительно высоких концентрациях. В среднем - на 100 тонн реголита приходится 1 гр. данного энергоизотопа.

Таким образом, чтобы извлечь вышеупомянутые 20 тонн гелия-3 для полного удовлетворения годовых энергопотребностей РФ, понадобится «перелопатить» 2 000 млн. тонн лунного грунта.

Физически это соответствует участку на Луне размерами 20х20 км с глубиной карьера 3 м. Задача по организации столь масштабной добычи - достаточно сложная, но вполне решаемая, уверены современные инженеры. Судя по всему, более трудной и дорогостоящей проблемой станет доставка десятков тонн топлива для теромоядерных печей на Землю.


Чего не хватает человечеству для гелиевой энергореволюции?

Для развития на Земле полноценной термоядерной энергетики на базе гелия-3 людям предстоит решить три основных задачи.

1. Создание надежных и мощных средств доставки грузов по маршруту Земля-Луна и обратно.

2. Возведение лунных баз и комплексов по добыче гелия-3, которое сопряжено с множеством технологических проблем.

3. Строительство собственно термоядерных электростанций на Земле, для чего также предстоит преодолеть определенные технологические барьеры.

К решению первой задачи человечество придвинулось практически вплотную. Все четыре страны, участвующие в Лунной гонке-2 плюс Европейский Союз, уже разработали или разрабатывают ракеты тяжелого класса, способны забрасывать тонны груза на лунную орбиту. Например, к 2027 г. в России запланирована реализация «в железе» ракеты-носителя «Ангара-А5В», которая будет способна доставить к Луне не менее 10 тонн полезного груза. С обратной транспортировкой будет попроще, поскольку сила притяжения Луны в 6 раз меньше земной, но здесь проблемой будет топливо. Его придется либо завозить с Земли, либо вырабатывать на поверхности нашего спутника.



Гораздо более серьезной является вторая задача, поскольку помимо организации собственно добычи гелия-3 из реголита инженерам придется создать надежные лунные базы с системами жизнеобеспечения для шахтеров будущего. В этом сильно помогут технологии, наработанные благодаря многолетней эксплуатации орбитальных станций, прежде всего МКС и «Мир». Как в России, так и в других странах сегодня активно проектируются лунные базы и, пожалуй, наша страна на сегодня имеет максимум технологий для реального воплощения подобных проектов.


Что касается третьей проблемы, то работы по созданию термоядерных реакторов идут на Земле последние три десятилетия. Основной технологической трудностью здесь является проблема удержания высокотемпературной плазмы (необходимой для «розжига» термоядерного синтеза) в т.н. «магнитных ловушках».

Этот вопрос уже решен для реакторов, работающих на принципе соединения дейтерия и трития (D + T = 4 He + n + энергия). Для поддержания такой реакции достаточно температуры в 100 млн. градусов.

Однако подобные реакторы никогда не станут массовыми, поскольку они чрезвычайно радиоактивны. Для запуска реакции с участием гелия-3 и дейтерия понадобятся температуры в 300-700 млн. градусов. Пока такую плазму не удается длительно удерживать в магнитных ловушках, но возможно к прорыву в этой области приведет запуск Международного экспериментального термоядерного реактора (ITER), который сейчас строится во Франции и будет введен в эксплуатацию к 2025 г.


Таким образом, десятилетие между 2030-2040 гг. имеет все шансы оказаться стартовым в деле развития энергетики на базе гелия-3, поскольку к этому времени, судя по всему, будут преодолены технологические препятствия, указанные выше. Соответственно, останется найти деньги на реализацию энергопроекта, который способен перевести человечество в эру чрезвычайно дешевой (почти дармовой) энергии со всеми вытекающими последствиями, как для экономики, так и качества жизни каждого человека.

Лучшие статьи по теме