Для школьников и родителей
  • Главная
  • Планета Земля
  • Уравнение динамики абсолютно твердого тела. Вращательное движение тела. Закон вращательного движения. Определение момента силы

Уравнение динамики абсолютно твердого тела. Вращательное движение тела. Закон вращательного движения. Определение момента силы

«Физика - 10 класс»

Угловое ускорение.


Ранее мы получили формулу, связывающую линейную скорость υ, угловую скорость ω и радиус R окружности, по которой движется выбранный элемент (материальная точка) абсолютно твёрдого тела, которое, вращается относительно неподвижной оси:

Мы знаем, что линейные скорости и ускорения точек твёрдого тела различны. В то же время угловая скорость всех точек твёрдого тела одинакова.

Угловая скорость - векторная величина. Направление угловой скорости определяется по правилу буравчика. Если направление вращения ручки буравчика совпадает с направлением вращения тела, то поступательное движение буравчика указывает направление вектора угловой скорости (рис. 6.1).

Однако равномерное вращательное движение встречается довольно редко. Гораздо чаще мы имеем дело с движением, при котором угловая скорость изменяется, очевидно, это происходит в начале и конце движения.

Причиной изменения угловой скорости вращения является действие на тело сил. Изменение угловой скорости со временем определяет угловое ускорение .

Bектор угловой скорости - это скользящий вектор. Независимо от точки приложения его направление указывает направление вращения тела, а модуль определяет быстроту вращения,

Среднее угловое ускорение равно отношению изменения угловой скорости к промежутку времени, за которое это изменение произошло:

При равноускоренном движении угловое ускорение постоянно и при неподвижной оси вращения характеризует изменение угловой скорости по модулю. При увеличении угловой скорости вращения тела угловое ускорение направлено в ту же сторону, что и угловая скорость (рис. 6.2, а), а при уменьшении - в противоположную (рис. 6.2, б).

Так как угловая скорость связана с линейной скоростью соотношением υ = ωR, то изменение линейной скорости за некоторый промежуток времени Δt равно Δυ =ΔωR. Разделив левую и правую части уравнения на Δt, имеем или а = εR, где а - касательное (линейное) ускорение , направленное по касательной к траектории движения (окружности).

Если время измерено в секундах, а угловая скорость - в радианах в секунду, то одна единица углового ускорения равна 1 рад/с 2 , т. е. угловое ускорение выражается в радианах на секунду в квадрате.

Неравномерно движутся при запуске и остановке любые вращающиеся тела, например ротор в электродвигателе, диск токарного станка, колесо автомобиля при разгоне и др.


Момент силы.


Для создания вращательного движения важно не только значение силы, но также и точка её приложения. Отворить дверь, оказывая давление около петель, очень трудно, в то же время вы легко её откроете, надавливая на дверь как можно дальше от оси вращения, например на ручку. Следовательно, для вращательного движения существенно не только значение силы, но и расстояние от оси вращения до точки приложения силы. Кроме этого, важно и направление приложенной силы. Можно тянуть колесо с очень большой силой, но так и не вызвать его вращения.

Момент силы - это физическая величина, равная произведению силы на плечо:

M = Fd,
где d - плечо силы, равное кратчайшему расстоянию от оси вращения до линии действия силы (рис. 6.3).

Очевидно, что момент силы максимален, если сила перпендикулярна радиус-вектору, проведённому от оси вращения до точки приложения этой силы.

Если на тело действует несколько сил, то суммарный момент равен алгебраической сумме моментов каждой из сил относительно данной оси вращения.

При этом моменты сил, вызывающих вращение тела против часовой стрелки, будем считать положительными (сила 2), а моменты сил, вызывающих вращение по часовой стрелке, - отрицательными (силы 1 и 3) (рис. 6.4).

Основное уравнение динамики вращательного движения. Подобно тому как опытным путём было показано, что ускорение тела прямо пропорционально действующей на него силе, было установлено, что угловое ускорение прямо пропорционально моменту силы:

Пусть на материальною точку, движующуюся по окружности, действует сила (рис. 6.5). Согласно второму закону Ньютона в проекции на касательное направление имеем mа к = F к. Умножив левую и правую части уравнения на r, получим ma к r = F к r, или

mr 2 ε = М. (6.1)

Заметим, что в данном случае r - кратчайшее расстояние от оси вращения до материальной точки и соответственно точки приложения силы.

Произведение массы материальной точки на квадрат расстояния до оси вращения называют моментом инерции материальной точки и обозначают буквой I.

Таким образом, уравнение (6.1) можно записать в виде I ε = М, откуда

Уравнение (6.2) называют основным уравнением динамики вращательного движения .

Уравнение (6.2) справедливо и для вращательного движения твёрдого тела , имеющего неподвижную ось вращения, где I - момент инерции твёрдого тела, а М - суммарный момент сил, действующих на тело. В этой главе при расчёте суммарного момента сил мы рассматриваем только силы или их проекции, принадлежащие плоскости, перпендикулярной оси вращения.

Угловое ускорение, с которым вращается тело, прямо пропорционально сумме моментов сил, действующих на него, и обратно пропорционально моменту инерции тела относительно данной оси вращения.

Если система состоит из набора материальных точек (рис. 6.6), то момент инерции этой системы относительно данной оси вращения ОО" равен сумме моментов инерции каждой материальной точки относительно этой оси вращения: I = m 1 r 2 1 + m 2 r 2 2 + ... .

Момент инерции твёрдого тела можно вычислить разделив тело на малые объёмы, которые можно считать материальными точками, и просуммировать их моменты инерции относительно оси вращения. Очевидно, что момент инерции зависит от положения оси вращения.

Из определения момента инерции следует, что момент инерции характеризует распределение массы относительно оси вращения.

Приведём значения моментов инерции для некоторых абсолютно твёрдых однородных тел массой m.

1. Момент инерции тонкого прямого стержня длиной l относительно оси, перпендикулярной к стержню и проходящей через его середину (рис. 6.7), равен:

2. Момент инерции прямого цилиндра (рис. 6.8), или диска относительно оси ОО", совпадающей с геометрической осью цилиндра или диска:

3. Момент инерции шара

4. Момент инерции тонкого обруча радиусом R относительно оси, проходящей через его центр:

Момент инерции по физическому смыслу во вращательном движении играет роль массы, т. е. он характеризует инертность тела по отношению к вращательному движению. Чем больше момент инерции, тем сложнее тело заставить вращаться или, наоборот, остановить вращающееся тело.

Рассмотрим вначале материальную точку А массой m, движущуюся по окружности радиусом г (рис. 1.16). Пусть на нее действует постоянная сила F, направленная по касательной к окружности. Согласно второму закону Ньютона, эта сила вызывает тангенциальное ускорение илиF = ma τ .

Используя соотношение a τ = βr , получаем F = m βr.

Умножим обе части написанного выше равенства на r.

Fr = m βr 2 . (3.13)

Левая часть выражения (3.13) является моментом силы: М= Fr. Правая часть представляет собой произведение углового ускорения β на момент инерции материальной точки А: J= m r 2 .

Угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции (основное уравнение динамики вращательного движения материальной точки ):

М = β J или
(3.14)

При постоянном моменте вращающей силы угловое ускорение будет величиной постоянной и его можно выразить через разность угловых скоростей:

(3.15)

Тогда основное уравнение динамики вращательного движения можно записать в виде

или
(3.16)

[
-момент импульса (или момент количества движения), МΔt - импульс момента сил (или импульс вращающего момента)].

Основное уравнение динамики вращательного движения можно записать в виде

(3.17)

§ 3.4 Закон сохранения момента импульса

Рассмотрим частый случай вращательного движения, когда суммарный момент внешних сил равен нулю. При вращательном движении тела каждая его частица движется с линейной скоростью υ = ωr, .

Момент импульса вращающегося тела равен сумме моментов

импульсов отдельных его частиц :

(3.18)

Изменение момента импульса равно импульсу момента сил:

dL=d(Jω)=Jdω=Mdt (3.19)

Если суммарный момент всех внешних сил, действующих на систему тела относительно произвольной неподвижной оси, равен нулю, т.е. М=0, то dL и векторная сумма моментов импульсов тел системы не изменяется с течением времени.

Сумма моментов импульсов всех тел изолированной системы сохраняется неизменной (закон сохранения момента импульса ):

d(Jω)=0 Jω=const (3.20)

Согласно закону сохранения момента импульса можно записать

J 1 ω 1 = J 2 ω 2 (3.21)

где J 1 и ω 1 - момент инерции и угловая скорость в начальный момент времени, а и J 2 и ω 2 – в момент времени t.

Из закона сохранения момента импульса следует, что при М=0 в процессе вращения системы вокруг оси любое изменение расстояния от тел до оси вращения должно сопровождаться изменением скорости их обращения вокруг этой оси. С увеличением расстояния скорость вращения уменьшается, с уменьшением – возрастает. Например, гимнаст, совершающий сальто, чтобы успеть сделать в воздухе несколько оборотов, во время прыжка свёртывается клубком. Балерина или фигуристка, кружась в пируэте, разводит руки если хочет замедлить вращение, и, наоборот, прижимает их к телу, когда старается вращаться как можно быстрее.

Моментом силы F относительно неподвиж­ной точки О называется физическая вели­чина, определяемая векторным произведе­нием радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25):

M = [ rF ].

Здесь М - псевдовектор, его направление совпадает с направлением поступательно­го движения правого винта при его враще­нии от г к F .

Модуль момента силы

M = Frsin = Fl , (18.1)

где - угол между г и F ; rsin = l - кратчайшее расстояние между линией дей­ствия силы и точкой О - плечо силы.

Моментом силы относительно непод­вижной оси z называется скалярная вели­чина М z , равная проекции на эту ось век­тор а М момента силы, определенного от­носительно произвольной точки О данной оси 2 (рис.26). Значение момента М z не зависит от выбора положения точки О на оси z .

Уравнение (18.3) представляет собой уравнение динамики вращательного дви­жения твердого тела относительно непод­вижной оси.

14. Центр масс системы материальных точек.

В механике Галилея - Ньютона из-за независимости массы от скорости импульс системы может быть выражен через ско­рость ее центра масс. Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распре­деление массы этой системы. Ее радиус-вектор равен

где m i и r i - соответственно масса и радиус-вектор i -й материальной точки; n - число материальных точек в системе;

- масса системы.

Скорость центра масс

Учитывая, что p i = m i v i , а

есть импульс р системы, можно написать

p = m v c , (9.2)

т. е. импульс системы равен произведе­нию массы системы на скорость ее цент­ра масс.

Подставив выражение (9.2) в уравне­ние (9.1), получим

mdv c / dt = F 1 + F 2 +...+ F n , (9.3)

т. е. центр масс системы движется как материальная точка, в которой сосредото­чена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Выражение (9.3) представляет собой закон движения центра масс.

В соответствии с (9.2) из закона со­хранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остает­ся неподвижным

2)Траектория движения. Пройденный путь. Кинематический закон движения.

Траекто­рия движения материальной точки - ли­ния, описываемая этой точкой в простран­стве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Рассмотрим движение материальной точки вдоль произвольной траектории (рис.2). Отсчет времени начнем с момен­та, когда точка находилась в положении А. Длина участка траектории АВ, прой­денного материальной точкой с момента начала отсчета времени, называется дли­ной пути As и является скалярной фун­кцией времени: s = s (t ). Вектор r = r - r 0 , проведенный из начального положе­ния движущейся точки в положение ее в. данный момент времени (приращение радиуса-вектора точки за рассматривае­мый промежуток времени), называется пе­ремещением.

При прямолинейном движении вектор перемещения совпадает с соответствую­щим участком траектории и модуль пе­ремещения | r | равен пройденному пу­ти s .

Вопросы к экзамену по физике (I семестр)

1. Движение. Виды движений. Описание движения. Система отсчета.

2. Траектория движения. Пройденный путь. Кинематический закон движения.

3. Скорость. Средняя скорость. Проекции скорости.

4. Ускорение. Понятие нормального и тангенциального ускорений.

5. Вращательное движение. Угловая скорость и угловое ускорение.

6. Центростремительное ускорение.

7. Инерциальные системы отсчета. Первый закон Ньютона.

8. Сила. Второй закон Ньютона.

9. Третий закон Ньютона.

10.Виды взаимодействий. Частицы-переносчики взаимодействий.

11.Полевая концепция взаимодействий.

12. Гравитационные силы. Сила тяжести. Вес тела.

13. Силы трения и упругие силы.

14. Центр масс системы материальных точек.

15. Закон сохранения импульса.

16. Момент силы относительно точки и оси.

17. Момент инерции твердого тела. Теорема Штейнера.

18. Основное уравнение динамики вращательного движения.

19. Момент импульса. Закон сохранения момента импульса.

20. Работа. Вычисление работы. Работа упругих сил.

21. Мощность. Вычисление мощности.

22. Потенциальное поле сил. Силы консервативные и неконсервативные.

23. Работа консервативных сил.

24. Энергия. Виды энергии.

25. Кинетическая энергия тела.

26. Потенциальная энергия тела.

27. Полная механическая энергия системы тел.

28. Связь между потенциальной энергией и силой.

29. Условия равновесия механической системы.

30. Соударение тел. Виды соударений.

31. Законы сохранения для различных видов соударений.

32. Линии и трубки тока. Неразрывность струи. 3 3. Уравнение Бернулли.

34. Силы внутреннего трения. Вязкость.

35. Колебательное движение. Виды колебаний.

36. Гармонические колебания. Определение, уравнение, примеры.

37.Автоколебания. Определение, примеры.

38. Вынужденные колебания. Определение, примеры. Резонанс.

39. Внутренняя энергия системы.

40. Первое начало термодинамики. Работа, совершаемая телом при изменениях объема.

41. Температура. Уравнение состояния идеального газа.

42. Внутренняя энергия и теплоемкость идеального газа.

43. Уравнение адиабаты идеального газа.

44. Политропические процессы.

45. Ван-дер-ваальсовский газ.

46. Давление газа на стенку. Средняя энергия молекул.

47.Распределение Максвелла.

48. Распределение Больцмана.

При наблюдении сложных движений, например движения тела человека (ходьба, бег, прыжки и т.д.), кажется трудным или даже невозможным описать перемещение всех его точек. Однако, анализируя такие движения, можно заметить, что они состоят из более простых - поступательных и вращательных перемещений.

Механика поступательного движения известна читателю, поэтому раздел начинается с рассмотрения вращательного движения. Наиболее простым является вращение твердого тела вокруг неподвижной оси. Этот случай позволяет ознакомиться со спецификой, терминологией и законами вращательного движения.

5.1. КИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ АБСОЛЮТНО ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ

Абсолютно твердым телом называют такое, расстояние между любыми двумя точками которого неизменно.

Размеры и форма абсолютно твердого тела не изменяются при его движении.

Понятие «абсолютно твердое тело» - физическая абстракция, так как любое тело способно к деформациям. Однако во многих случаях деформацией можно пренебречь.

Наиболее простой случай вращательного движения абсолютно твердого тела - вращение относительно неподвижной оси. Это такое движение, при котором точки тела движутся по окружностям, центры которых лежат на прямой, называемой осью вращения.

Известно, что в некоторых случаях для характеристики движения тела необязательно указывать движение всех его точек; так, например, при поступательном движении достаточно указать движение любой одной точки тела.

При вращательном движении вокруг оси точки тела перемещаются по разным траекториям, но за одно и то же время все точки и само тело поворачивается на одинаковый угол. Для характеристики вращения

проведем в плоскости, перпендикулярной оси, радиус-вектор к некоторой точке i (рис. 5.1). Временная зависимость угла α поворота радиуса-вектора относительно некоторого выделенного направления ОХ является уравнением вращательного движения твердого тела вокруг неподвижной оси:

Быстрота вращения тела характеризуется угловой скоростью, равной первой производной от угла поворота радиуса-вектора по времени:

Угловая скорость есть вектор, который направлен по оси вращения и связан с направлением вращения правилом правого винта (рис. 5.2). Вектор угловой скорости в отличие от векторов скорости и силы является скользящим: у него нет определенной точки приложения, и он может быть расположен в любом месте на оси вращения. Таким образом, задание вектора ω указывает положение оси вращения, направление вращения и модуль угловой скорости.

Быстрота изменения угловой скорости характеризуется угловым ускорением, равным первой производной от угловой скорости по времени:

или в векторной форме:

Из (5.4) видно, что вектор углового ускорения совпадает по направлению с элементарным, достаточно малым изменением вектора угловой скорости dω : при ускоренном вращении угловое ускорение направлено так же, как и угловая скорость, при замедленном вращении - противоположно ей.

Так как угловое перемещение всех точек абсолютно твердого тела одинаково, то, согласно (5.2) и (5.3), одновременно все точки тела имеют одинаковую угловую скорость и одинаковое угловое ускорение. Линейные характеристики - перемещение, скорость, ускорение - различны для разных точек. Укажем в скалярном виде связь, которая может быть выведена самостоятельно, между линейными и угловыми характеристиками для i-й точки, движущейся по окружности радиусом r i:

Рис. 5.3

В заключение приведем полученные путем интегрирования соответствующих выражений формулы кинематики вращательного движения твердого тела вокруг неподвижной оси:

уравнение равномерного вращательного движения [см. (5.2)]:

зависимость угловой скорости от времени в равнопеременном вращательном движении [см. (5.3)]:

уравнение равнопеременного вращательного движения [см. (5.1) и (5.6)]:

Полезно сопоставить эти формулы с аналогичными зависимостями для поступательного движения.

5.2. ОСНОВНЫЕ ПОНЯТИЯ. УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Момент силы _

Пусть к некоторой точке i твердого тела приложена сила F^, лежащая в плоскости, перпендикулярной оси вращения (рис. 5.4).

Моментом силы относительно оси вращения называют векторное произведение радиуса-вектора точки i на силу:

Раскрывая его, можно записать:

где β - угол между векторами r i и F i . Так как плечо силы h i = r i sinβ (см. рис. 5.4), то

Если сила действует под некоторым углом α к плоскости вращения (рис. 5.5), то ее можно разложить на две составляющие. Одна из них лежит в плоскости, перпендикулярной оси вращения, а другая параллельна этой этой оси и не оказывает влияния на вращение тела (в реальном случае она действует лишь на подшипники). Далее будут рассматриваться только силы, лежащие в плоскости, перпендикулярной оси вращения.

Рис. 5.4

Рис. 5.5

Работа во вращательном движении

Пусть при действии силы F i (см. рис. 5.4) тело поворачивается на достаточно малый угол dα. Найдем работу этой силы.

Известное из средней школы выражение для работы силы в данном случае следует записать так:

Итак,

элементарная работа силы во вращательном движении равна произведению момента силы на элементарный угол поворота тела.

Если на тело действует несколько сил, то элементарная работа, совершенная всеми ими, определяется аналогично (5.12):

где М - суммарный момент всех внешних сил, действующих на тело.

Если при повороте тела положение радиуса-вектора изменилось от α 1 до α 2 , то работа внешних сил может быть найдена интегрированием выражения (5.13):

Момент инерции

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от распределения ее в пространстве относительно оси. Мера инертности тела при вращении характеризуется моментом инерции тела относительно оси вращения. Укажем сначала, что

моментом инерции материальной точки относительно оси вращения называют величину, равную произведению массы точки на квадрат расстояния ее от оси:

Моментом инерции тела относительно оси называют сумму моментов инерции всех материальных точек, из которых состоит тело:


В качестве примера выведем формулу момента инерции тонкого однородного стержня длиной l и массой т относительно оси, перпендикулярной стержню и проходящей через его середину (рис. 5.6). Выберем достаточно малый участок стержня длиной dx и массой dm, удаленный от оси 00" на расстояние х. Ввиду малости этого участка он может быть принят за материальную точку, его момент инерции [см. (5.15)] равен:

Масса элементарного участка равна произведению линейной плотности т/l, умноженной на длину элементарного участка: dm = (m/l) dx Подставив это выражение в (5.18), получим

Чтобы найти момент инерции всего стержня, проинтегрируем выражение (5.19) по всему стержню, т.е. в пределах от -1/2 до +1/2:

Приведем выражения для моментов инерции разных симметричных тел массой т:

полого однородного цилиндра (обруча) с внутренним радиусом r и внешним R относительно оси ОО", совпадающей с геометрической осью цилиндра (рис. 5.7):

сплошного однородного цилиндра (r = 0) или диска [см. (5.21)]:

однородного шара относительно оси, проходящей через его центр:

прямоугольною параллелепипеда относительно оси ОО", проходящей через его центр перпендикулярно плоскости основания (рис. 5.8):

Во всех перечисленных примерах ось вращения проходит через центр масс тела. При решении задач для определения момента инерции тела относительно оси, не проходящей через центр масс, можно воспользоваться теоремой Гюйгенса. Согласно этой теореме, момент инерции тела относительно некоторой оси OO":

где J 0 - момент инерции относительно параллельной оси, проходящей через центр масс тела OO"; т - масса тела; d - расстояние между двумя параллельными осями (рис. 5.9). Единицей момента инерции является килограмм-метр в квадрате (кг-м 2).

Момент импульса

Моментом импульса (момент количества движения) материальной точки, вращающейся относительно некоторой оси, называется величина, равная произведению импульса точки на расстоянии ее до оси вращения:

Момент импульса тела, вращающегося относительно некоторой оси, равен сумме моментов импульсов точек, из которых состоит данное тело:

Так как угловая скорость всех точек твердого тела одинакова, выне-ся ω за знак суммы [см. (5.29)], получим:

(/ - момент инерции тела относительно оси), или в векторной форме:

Итак, момент импульса равен произведению момента инерции точки на угловую скорость. Отсюда следует, что направления векторов момента импульса и угловой скорости совпадают. Единицей момента импульса является килограмм-метр в квадрате в секунду (кг? м 2 ? с -1).

Формулу (5.31) полезно сравнить с аналогичной формулой для импульса в поступательном движении.

Кинетическая энергия вращающегося тела

При вращении тела его кинетическая энергия складывается из кинетических энергий отдельных точек тела. Для твердого тела:

Полезно сопоставить выражение (5.32) с аналогичным выражением для поступательного движения.

Продифференцировав (5.32), получим элементарное изменение кинетической энергии во вращательном движении:

Основное уравнение динамики вращательного движения

Пусть твердое тело, на которое действовали внешние силы, повернулось на достаточно малый угол da. Приравняем элементарную работу всех внешних сил при таком повороте [см. (5.13)] элементарному изменению кинетической энергии [см. (5.33)]: M = J ω dω , откуда:

Это и есть основное уравнение динамики вращательного движения. Из (5.35) видно, что момент инерции характеризует инерционные свойства тела во вращательном движении: при действии внешних сил угловое ускорение тела тем больше, чем меньше момент инерции тела.

Основное уравнение для вращательного движения играет ту же роль, что и второй закон Ньютона для поступательного. Физические величины, входящие в это уравнение, аналогичны соответственно силе, массе и ускорению.

Из (5.34) следует, что:

Производная от момента импульса тела по времени равна равнодействующему моменту всех внешних сил.

Зависимость углового ускорения от момента силы и момента инерции можно продемонстрировать с по-

мощью прибора, изображенного на рис. 5.10. Под действием груза 1, подвешенного на нити, перекинутой через блок, крестовина ускоренно вращается. Перемещая грузики 2 на разные расстояния от оси вращения, можно изменять момент инерции крестовины. Меняя грузы, т.е. моменты сил, и момент инерции, можно убедиться, что угловое ускорение возрастает при увеличении момента силы или уменьшении момента инерции.

5.3. ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА

Рассмотрим частный случай вращательного движения, когда суммарный момент внешних сил равен нулю. Как видно из (5.37), dL/dt = 0 при М = 0, откуда

Это положение известно под названием закона сохранения момента импульса: если суммарный момент всех внешних сил, действующих на тело, равен нулю, то момент импульса этою тела остается постоянным.

Опуская доказательство, отметим, что закон сохранения момента импульса справедлив не только для абсолютно твердого тела.

Наиболее интересные применения этого закона связаны с вращением системы тел вокруг общей оси. При этом необходимо учитывать векторный характер момента импульса и угловых скоростей. Так, для системы, состоящей из N тел, вращающихся вокруг общей оси, закон сохранения момента импульса можно записать в форме:

Рассмотрим некоторые примеры, иллюстрирующие этот закон.

Гимнаст, выполняющий сальто (рис. 5.11), в начальной фазе сгибает колени и прижимает их к груди, уменьшая тем самым момент инерции и увеличивая угловую скорость вращения вокруг горизонтальной оси, проходящей через центр масс. В конце прыжка тело выпрямляется, момент инерции возрастает, угловая скорость уменьшается. Фигурист, совершающий вращение вокруг вертикальной оси (рис. 5.12), в начале вращения приближает руки к корпусу, тем самым уменьшая момент инерции и увеличивая угловую скорость. В конце вращения происходит обратный процесс: при разведении рук увеличивается момент инерции и уменьшается угловая скорость, что позволяет легко остановиться.

Такое же явление может быть продемонстрировано на скамье Жуковского, которая представляет собой легкую горизонтальную платформу, вращающуюся с малым трением вокруг вертикальной оси. При изменении положения рук изменяются момент инерции и угловая скорость (рис. 5.13), момент импульса остается постоянным. Для усиления демонстрационного эффекта в руках человека гантели. На скамье Жуковского можно продемонстрировать векторный характер закона сохранения момента импульса.

Экспериментатор, стоящий на неподвижной скамье, получает от помощника велосипедное колесо, вращающееся вокруг вертикальной оси (рис. 5.14, слева). В этом случае момент импульса системы человек и платформа-колесо определяется только моментом импульса колеса:

здесь J ч - момент инерции человека и платформы; J K и ω κ - момент инерции и угловая скорость колеса. Так как момент внешних сил относительно вертикальной оси равен нулю, то L сохраняется (L = const).

Если экспериментатор повернет ось вращения колеса на 180° (рис. 5.14, справа), то момент импульса колеса будет направлен противоположно первоначальному и равен J K ω K . Так как вектор момента импульса колеса изменяется, а момент импульса системы сохраняется, то неизбежно должен измениться и момент импульса, человека и платформы, он уже не будет равен нулю 1 . Момент импульса системы в этом случае

1 Небольшим несовпадением оси колеса с осью вращения платформы можно пренебречь.


По формуле (5.42) можно приближенно оценить момент инерции тела человека вместе с платформой, для чего необходимо измерить ω κ , ω 4 и найти J k . Способ измерения угловых скоростей равномерного вращения известен читателю. Зная массу колеса и предполагая, что в основном масса распределена по ободу, по формуле (5.22) можно определить J k . Для уменьшения ошибки можно утяжелить обод велосипедного колеса, проложив по нему специальные шины. Человек должен располагаться симметрично оси вращения.

Более простой вариант рассмотренной демонстрации состоит в том, что человек, стоящий на скамье Жуковского, сам приводит во вращение колесо, которое он держит на вертикальной оси. При этом человек и платформа начинают вращаться в противоположные стороны (рис. 5.15).

5.4. ПОНЯТИЕ О СВОБОДНЫХ ОСЯХ ВРАЩЕНИЯ

Тело, вращающееся вокруг фиксированной оси, в общем случае действует на подшипники или другие устройства, которые сохраняют неизменным положение этой оси. При больших угловых скоростях и моментах инерции эти воздействия могут быть значительными. Однако в любом теле можно выбрать такие оси, направление которых при вращении будет сохраняться без каких-либо специальных устройств. Чтобы понять, какому условию должен удовлетворять выбор таких осей, рассмотрим следующий пример.

Сопоставляя (5.43) с координатами центра масс, замечаем, что силы, действующие на ось, уравновешиваются, если ось вращения проходит через центр масс.

Таким образом, если ось вращения проходит перпендикулярно стержню через центр масс, то воздействия на эту ось со стороны вращающегося тела не будет. Если при этом убрать подшипники, то ось вращения начнет перемещаться, сохраняя неизменным положение в пространстве, а тело будет продолжать вращение вокруг этой оси.

Оси вращения, которые без специального закрепления сохраняют свое направление в пространстве, называют свободными. Примерами таких осей являются оси вращения Земли и волчка, ось всякого брошенного и свободно вращающегося тела и т.п.

У тела произвольной формы всегда имеется по крайней мере три взаимно перпендикулярные оси, проходящие через центр масс, которые могут быть свободными осями вращения. Эти оси называют главными осями инерции. Хотя все три главные оси инерции являются свободными, наиболее устойчивым будет вращение вокруг оси с наибольшим моментом инерции. Дело в том, что в результате неизбежного действия внешних сил, например трения, а также в связи с тем, что трудно задать вращение точно вокруг определенной оси, вращение вокруг остальных свободных осей неустойчиво.

В некоторых случаях, когда тело вращается около свободной оси с малым моментом инерции, оно само изменяет эту ось на ось с наибольшим моментом.

Это явление демонстрируют следующим опытом. К электродвигателю подвешена на нити цилиндрическая палочка, которая может вращаться вокруг своей геометрической оси (рис. 5.17, а). Момент инерции относительно этой оси J 1 = тR 2 /2. При достаточно большой угловой скорости палочка изменит свое положение (рис. 5.17, б). Момент инерции относительно новой оси равен J 2 = ml 2 /12. Если l 2 >6R 2 , то и J 2 > J 1 . Вращение вокруг новой оси будет устойчивым.

Читатель может самостоятельно на опыте убедиться, что вращение брошенной спичечной коробки устойчиво относительно оси, проходящей перпендикулярно большей грани, и неустойчиво или менее устойчиво относительно осей, проходящих перпендикулярно другим граням (см. рис. 5.8).

Вращение животных и человека в свободном полете и при различных прыжках происходит вокруг свободных осей с наибольшим или наименьшим моментом инерции. Так как положение центра масс зависит от позы тела, то при разных позах будут и различные свободные оси.

5.5. ПОНЯТИЕ О СТЕПЕНЯХ СВОБОДЫ

Положение свободной материальной точки в пространстве задается тремя независимыми координатами: х, у, z. Если точка не свободна, а перемещается, например, по некоторой поверхности, то не все три координаты будут независимыми.

Независимые переменные, характеризующие положение механической системы, называют степенями свободы.

У свободной материальной точки три степени свободы, в рассмотренном примере - две степени свободы. Так как молекулу одноатомного газа можно рассматривать как материальную точку, следовательно, такая свободная молекула тоже имеет три степени свободы.

Еще некоторые примеры.

Две материальные точки 1 и 2 жестко связаны друг с другом. Положение обеих точек задано шестью координатами x 1 , y 1 , z 1 , x 2 , y 2 , z 2 , на которые наложены одно ограничение и одна связь, математически выражаемая в форме уравнения:

Физически это означает, что расстояние между материальными точками всегда l. В этом случае число степеней свободы равно 5. Рассмотренный пример является моделью двухатомной молекулы.

Три материальные точки 1, 2 и 3 жестко связаны друг с. другом. Девять координат характеризуют положение такой системы: x 1 , y 1 , z 1 , x 2 , y 2 , z 2 , x 3 , y 3 , z 3 . Однако три связи между точками обусловливают независимость только шести координат. Система имеет шесть степеней свободы. Так как положение трех точек, не лежащих на одной прямой, однозначно определяет положение твердого тела, то и твердое тело имеет шесть степеней свободы.

Такое же число степеней свободы (шесть) имеют трехатомные и многоатомные молекулы, если эти молекулы рассматривать как жесткие образования.

1 Если для зависимой координаты из (5.44) получают мнимую величину, это означает, что выбранные независимые координаты не соответствуют каким-либо точкам, расположенным на сфере заданного радиуса.

В реальных многоатомных молекулах атомы находятся в колебательных движениях, поэтому число степеней свободы таких молекул более шести.

Число степеней свободы определяет не только число независимых переменных, характеризующих положение механической системы, но и, что очень важно, число независимых перемещений системы. Так, три степени свободы свободной материальной точки означают, что любое перемещение точки можно разложить на независимые перемещения по трем осям координат. Так как точка не имеет размеров, то говорить о ее вращении не имеет смысла. Итак, материальная точка имеет три степени свободы поступательного движения. Материальная точка на плоскости, сфере или иной поверхности имеет две степени свободы поступательного движения. Перемещение материальной точки вдоль кривой (условный пример - движение поезда по рельсам) соответствует одной степени свободы поступательного движения.

Твердое тело, вращающееся вокруг неподвижной оси, имеет одну степень свободы вращательного движения. Колесо поезда имеет две степени свободы: одна - вращательного движения, а другая - поступательного (перемещение оси колеса вдоль рельса). Шесть степеней свободы твердого тела означают, что любое перемещение этого тела можно разложить на составляющие: перемещение центра масс раскладывается на три поступательных движения по осям координат, а вращение состоит из трех более простых поворотов относительно осей координат, проходящих через центр масс.

На рис. 5.18-5.20 показаны шарнирные соединения, соответствующие одной, двум и трем степеням свободы.

Рис. 5.18

Рис. 5.19

Рис. 5.20

5.6. ЦЕНТРИФУГИРОВАНИЕ

Центрифугированием называется процесс разделения (сепарации) неоднородных систем, например частиц от жидкостей, в которых они находятся, обусловленный их вращением.

Рассмотрим разделение неоднородных систем в поле силы тяжести. Предположим, что имеется водная суспензия частиц различной плотности. Со временем благодаря действию силы тяжести и выталкивающей силы F A происходит расслаивание частиц: частицы с большей, чем у воды, плотностью тонут, частицы с меньшей, чем у воды, плотностью всплывают. Результирующая сила, действующая, например, на более плотную отдельную частицу, равна:

где ρ 1 - плотность вещества частицы; ρ - плотность воды; V - объем частицы.

Если значения ρ 1 и ρ мало отличаются друг от друга, то сила F p мала и расслоение (осаждение) происходит достаточно медленно. В центрифуге (сепараторе) такое разделение производят принудительно, вращая разделяемую среду.

Рассмотрим физику этого явления.

Пусть рабочий объем центрифуги (рис. 5.21: а - внешний вид; б - схема рабочего объема) полностью занят какой-либо однородной жидкостью. Выделим мысленно небольшой объем V этой жидкости, находящийся на расстоянии r от оси вращения OO". При равномерном вращении центрифуги на выделенный объем кроме силы тяжести и выталкивающей силы, которые уравновешивают друг друга, действует центростремительная сила. Это сила со стороны окружающей объем жидкости. Она, естественно, направлена к оси вращения и равна:

где ρ - плотность жидкости.

Предположим теперь, что выделенный объем V - это сепарируемая частица, плотность вещества которой ρ 1 (ρ 1 Φ ρ). Сила, действующая на частицу со стороны окружающей жидкости, не изменится, как это видно из формулы (5.45).

Для того чтобы частица вращалась вместе с жидкостью, на нее должна действовать центростремительная сила, равная:

где m 1 - масса частицы, а ρ 1 - соответствующая ей плотность.

Рис. 5.21

Если F > F 1 , то частица перемещается к оси вращения. Если F < F 1 , то воздействия на частицу со стороны жидкости будет недостаточно, чтобы удержать ее на круговой траектории, и частица по инерции начнет перемещаться к периферии. Эффект сепарации определяется превышением силы F, действующей со стороны жидкости на выделенную частицу, над тем значением центростремительной силы F 1 , которое обусловливает движение по окружности:

Это выражение показывает, что эффект центрифугирования тем больше, чем больше различие плотностей сепарируемых частиц и жидкости, а также существенно зависит от угловой скорости вращения 1 .

Сравним разделение центрифугированием с разделением с помощью силы тяжести:

1 Сила тяжести и выталкивающая сила при выводе формулы (5.47) не учитываются, так как они направлены вдоль оси вращения и не оказывают принципиального влияния на центрифугирование.

Ультрацентрифуги способны разделить частицы размером менее 100 нм, взвешенные или растворенные в жидкости. Они нашли широкое применение в медико-биологических исследованиях для разделения биополимеров, вирусов и субклеточных частиц.

Быстрота сепарации особенно важна в биологических и биофизических исследованиях, так как со временем может существенно измениться состояние изучаемых объектов.

Динамика вращательного движения твердого тела. Основное уравнение динамики вращательного движения. Момент инерции твердого тела относительно оси. Теорема Штейнера. Момент импульса. Момент силы. Закон сохранения и изменения момента импульса.

На прошлом занятии разобрали импульс и энергию. Рассмотрим величину момент импульса - характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью проходит вращение. Рассмотрим частицу А. r – радиусвектор, характеризующий положение относительно некоторой точки O, выбранной системы отсчёта. P-импульс в этой системе. Векторная величина L – момент импульса частицы А относительно точки О: Модуль вектора L: где α – угол между r и p, l=r sin α плечо вектора p относительно точки О.

Рассмотрим изменение вектора L со временем: = т. к. dr/dt =v, v направлен так же, как и p , т. к. dp/dt=F –равнодействующая всех сил. Тогда: Момент силы: М= Модуль момента силы: где l – плечо вектора F относительно точки O Уравнение моментов: производная по времени от момента импульса L частицы относительно некоторой точки О равна моменту M равнодействующей силы F относительно той же точки О: Если M = 0, то L=const – если момент равнодействующей силы равен 0 в течении интересующего промежутка времени, то импульс частицы остаётся постоянным в течении этого времени.

Уравнение моментов позволяет: Найти момент силы M относительно точки O в любой момент времени t , если известна зависимость от времени момента импульса L(t) частицы, относительно той же точки; Определить припращение момента импульса частицы относительно точки O за любой промежуток времени, если известна зависимость от времени момента сил M(t), действующего на эту частицу (относительно той же точки О). Используем уравнение моментов, и запишем элементарное приращение вектора L: Тогда, проинтегрировав выражение, найдём приращение L за конечный промежуток времени t: правая часть – импульс момента силы. Приращение момента импульса частицы за любой промежуток времени равно импульсу момента силы за это же время.

Момент импульса и момент силы относительно оси Возьмём ось z. Выберем точку О. L - момент импульса частицы А относительно точки, M- момент силы. Моментом импульса и моментом силы относительно оси z называют проекцию на эту ось векторов L и M. Обозначают Lz и Mz - они не зависят от точки выбора О. Производная по времени от момента импульса частицы относительно оси z равна моменту силы относительно этой оси. В частности: Mz=0 Lz=0. Если момент силы относительно некоторой подвижной оси z равен нулю, то момент импульса частицы относительно этой оси остаётся постоянным, при этом сам вектор L может меняться.

Закон сохранения моменте импульса Выберем произвольную систему частиц. Момент импульса данной системы будет векторная сумма моментов импульсов её отдельных частиц: Векторы определены относительно одной и той же оси. Момент импульса величина аддитивная: момент импульса системы равен сумме моментов импульсов её отдельных частей независимо от того, взаимодействуют они между собой или нет. Найдём изменение момента импульса: - суммарный момент всех внутренних сил относительно точки О. ; - суммарный момент всех внешних сил относительно точки О. Производная момента импульса системы по времени равна суммарному моменту всех внешних сил! (используя 3 закон Ньютона):

Момент импульса системы может изменяться под действием только суммарного момента всех внешних сил Закон сохранения импульса: момент импульса замкнутой системы частиц остаётся постоянным, т. е. не меняется со временем. : Справедливо для момента импульса, взятого относительно любой точки инерциальной системы отсчёта. Внутри системы изменения могут быть, но приращение момента импульса одной части системы равно убыли момента импульса другой её части. Закон сохранения момента импульса – не является следствием 3 -го закона Ньютона, а представляет самостоятельный общий принцип; один из фундаментальных законов природы. Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

Динамика твёрдого тела Два основных вида движения твёрдого тела: Поступательное: все точки тела получают за один и тот же промежуток времени равные по величине и направлению перемещения. Задать движение одной точки Вращательное: все точки твёрдого тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Задать ось вращения и угловую скорость в каждый момент времени Любое движение твёрдого тела может быть представлена как сумма двух этих движений!

Произвольное перемещение твёрдого тела из положения 1 в положение 2 можно представить как сумму двух перемещенийпоступательного перемещения из положения 1 в положения 1’ или 1’’ и поворота вокруг оси О’ или оси О’’. Элементарное перемещение ds: - «поступательного» - «вращательного» Скорость точки: - одинаковая для всех точек тела скорость поступательного движения - различная для разных точек тела скорость, связанная с вращением тела

Пусть система отсчёта неподвижна. Тогда движение можно рассмотреть как вращательное движение с угловой скоростью w в системе отсчёта, движущейся относительно неподвижной системы поступательно со скоростью v 0. Линейная скорость v’, обусловленная вращением твёрдого тела: Скорость точки при сложном движении: Существуют точки, которые при векторном перемножении векторов r и w дают вектор v 0. Эти точки лежат на одной прямой и образуют мгновенную ось вращения.

Движение твёрдого тела в общем случае определяется двумя векторными уравнениями: Уравнение движения центра масс: Уравнение моментов: Законы действующих внешних сил, точки их приложения и начальные условия скорость и положение каждой точки твердого тела в любой момент времени. Точки приложения внешних сил можно переносить вдоль направления действия сил. Равнодействующая сила- сила, сила которая равна результирующей сил F, действующих на твёрдое тело, и создаёт момент, равный суммарному моменту M всех внешних сил. Случай поля тяжести: равнодействующая сил тяжести проходит через центр масс. Сила, действующая на частицу: Суммарный момент сил тяжести относительно любой точки:

Условия равновесия твердого тела: тело будет оставаться в состоянии покоя, если нет причин, вызывающих его движение. По двум основным уравнениям движения тела, для это необходимо два условия: Результирующая внешних сил равна нулю: Сумма моментов всех внешних сил, действующих на тело относительно любой точки должен быть равен нулю: Если система неинерциальная, то кроме внешних сил необходимо учитывать силы инерции (силы, обусловленные ускоренным движением неинерциальной системы отсчета относительно инерциальной системы отсчета). Три случая движения твёрдого тела: Вращение вокруг неподвижной оси Плоское движение Вращение вокруг свободных осей

Вращение вокруг неподвижной оси Момент импульса твёрдого тела относительно оси вращения ОО’: где mi и pi- масса и расстояние от оси вращения i-й частицы твёрдого тела, wz –его угловая скорость. Введём обозначение: где I – момент инерции твёрдого тела относительно оси OO’: Момент инерции тела находится как: где dm и dv – масса и объём элемента тела, находящегося на расстоянии r от интересующей нас оси z; ρ- плотность тела в данной точке.

Моменты инерции однородных твёрдых тел, относительно оси проходящей через центр масс: Теорема Штейнера: момент инерции I относительно произвольной оси z равен моменту инерции Ic относительно оси Ic, параллельной данной и проходящей через центр масс C тела, плюс произведение массы m тела на квадрат расстояния a между осями:

Уравнение динамики вращения твёрдого тела: где Mz – суммарный момент всех внешних сил относительно оси вращения. Момент инерции I определяет инерционные свойства твёрдого тела при вращении: при одном и том же значении момента сил Mz тело с большим моментом инерции приобретает меньшее угловое ускорения βz. Mz включает и моменты сил инерции. Кинетическая энергия вращающегося твёрдого тела (ось вращения неподвижна): пусть скорость частицы вращающегося твёрдого тела – Тогда: где I – момент инерции относительно оси вращения, w – его угловая скорость. Работа внешних сил при вращении твердого тела вокруг неподвижной оси определяется действием момента Mz этих сил относительно данной оси.

Плоское движение твёрдого тела При плоском движении центра масс твердого тела движется в определённой плоскости, неподвижной в данной системе отсчёта К, а вектор его угловой скорости w перпендикулярен этой плоскости. Движение описывают два уравнения: где m – масса тела, F-результирующая всех внешних сил, Ic и Mcz- момент инерции и суммарный момент всех внешних сил- оба относительно оси, проходящей через центр тела. Кинетическая энергия твёрдого тела при плоском движении складывается из энергии вращения в системе вокруг оси, проходящей центр масс, энергии связанной с движением центра масс: где Ic –момент инерции относительно оси вращения (через ЦМ), w – угловая скорость тела, m – его масса, Vc – скорость центра масс тела системе отсчёта K.

Вращение вокруг свободных осей Ось вращения, направление которой в пространстве остаётся неизменным без действия на неё каких либо сил извне, называют свободной осью вращения тела. Главные оси тела – три взаимно перпендикулярные оси, проходящие через его центр масс, которые могут служить свободными осями. Для удержания оси вращения в неизменном направлении к ней необходимо приложить момент M некоторых внешних сил F: Если угол равен 90 градусам, то L совпадает по направлению с w, т. е. М=0!- направление оси вращения будет оставаться неизменным без внешнего воздействия При вращении тела вокруг любой главной оси вектор момента импульса L совпадает по направлению с угловой скоростью w: где I -момент инерции тела относительно данной оси.

Лучшие статьи по теме