Для школьников и родителей
  • Главная
  • Планета Земля
  • Волны конспект. Конспект урока физики на тему "Длина волны. Скорость распространения волн". Планируемые образовательные результаты

Волны конспект. Конспект урока физики на тему "Длина волны. Скорость распространения волн". Планируемые образовательные результаты

УРОК 7/29

Тема. Механические волны

Цель урока: дать учащимся понятие о волновой движение как процесс распространения колебаний в пространстве с течением времени.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Контроль знаний

1. Преобразование энергии во время колебаний.

2. Вынужденные колебания.

3. Резонанс

Демонстрации

1. Образование и распространение поперечных и продольных волн.

2. Фрагменты видеофильма «Поперечные и продольные волны»

Изучение нового материала

1. Механические волны.

2. Основные характеристики волн.

3. Интерференция волн.

4. Поперечные и продольные волны

Закрепление изученного материала

1. Качественные вопросы.

2. Учимся решать задачи

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Источниками волн являются колеблющиеся тела. Если такое тело находится в каком-либо среде, колебания передаются прилегающим частицам вещества. А поскольку частицы вещества взаимодействуют друг с другом, колеблющиеся частицы передают колебания своим «соседям». В результате колебания начинают распространяться в пространстве. Так и возникают волны.

Ø Волной называют процесс распространения колебаний со временем.

Механические волны в среде обусловлены упругими деформациями среды. Образование волны того или иного вида объясняется наличием силовых связей между частицами, участвующих в колебаниях.

Любая волна переносит энергию, ведь волна - это колебания, распространяющиеся в пространстве, а любые колебания, как мы знаем, имеют энергию.

Ø Механическая волна переносит энергию, но не переносит вещество.

Если источник волн совершает гармонические колебания, то каждая точка данного среды, в которой распространяются колебания, так же совершает гармонические колебания, причем с той же частотой, что и источник волн. В этом случае волна имеет синусоидальную форму. Такие волны называются гармоничными. Максимум гармонической волны называют ее гребнями.

Как пример рассмотрим волну, которая бежит по шнуру, когда один его конец совершает колебания под действием внешней силы. Если наблюдать за любой точкой шнура, мы заметим, что каждая точка совершает колебания с тем же периодом.

Ø Промежуток времени Т, в течение которого происходит одно полное колебание, называют периодом колебаний.

Полное колебание происходит за время, когда тело из одного крайнего положения возвращается в это самое крайнее положение.

Ø Частотой колебаний v называют физическую величину, равную числу колебаний за единицу времени.

Ø Модуль наибольшего отклонения частиц от положения равновесия называется амплитудой волны.

Период волны и ее частота связаны соотношением:

Единицу частоты колебаний называют герц (Гц): 1 Гц = 1/c .

Ø Расстояние между ближайшими точками волны, которые движутся одинаково, называется длиной волны и обозначается λ.

Поскольку волны - это колебания, распространяющиеся в пространстве с течением времени, выясним, какова же скорость распространения волн. За время, равное одному периоду Т, каждая точка среды осуществила ровно одно колебание и вернулась в то же положение. Итак, волна сместилась в пространстве именно на одну длину волны. Таким образом, если обозначить скорость распространения волны , получаем, что длина волны равна:

λ = T .

Поскольку Т = 1/v , получаем, что скорость волны, длина волны и частота волны связаны соотношением:

= λv .

Волны от разных источников распространяются независимо друг от друга, благодаря чему они свободно проходят одна сквозь другую. Накладывая волны с одинаковыми длинами, можно наблюдать усиление волн в одних точках пространства и ослабление в других.

Ø Взаимное усиление или ослабление в пространстве двух или нескольких волн с одинаковой длиной называют интерференцией волн.

Механические волны бывают поперечными и продольными:

Частицы поперечной волны колеблются поперек направления распространения волны (в направлении переноса энергии), а доли продольной - вдоль направления распространения волны.

Ø Волны, в которых частицы среды во время колебаний смещаются в направлении, перпендикулярном к направлению распространения волны, называются поперечными.

Поперечные волны могут распространяться только в твердых телах. Дело в том, что такие волны обусловлены деформациями сдвига, а в жидкостях и газах не существует деформаций сдвига: жидкости и газы не «оказывают сопротивления» смене формы.

Ø Волны, в которых частицы среды во время колебаний смещаются вдоль направления распространения волны, называются продольными.

Пример продольной волны - волна, что бежит по мягкой пружине, когда один ее конец выполняет колебания под действием периодической внешней силы, направленной вдоль пружины. Продольные волны могут распространяться в любой среде. Соотношение = λ v и λ = T справедливы для обоих видов волн.

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. Что представляют собой механические волны?

2. Одинаковая ли длина волны одной и той же частоты в различных средах?

3. Где могут распространяться поперечные волны?

4. Где могут распространяться продольные волны?

Второй уровень

1. Возможны поперечные волны в жидкостях и газах?

2. Почему волны переносят энергию?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

ЧТО МЫ УЗНАЛИ НА УРОКЕ

· Волной называется процесс распространения колебаний со временем.

· Промежуток времени Т, в течение которого происходит одно полное колебание, называют периодом колебаний.

· Частотой колебаний v называют физическую величину, равную числу колебаний за единицу времени.

· Расстояние между ближайшими точками волны, которые движутся одинаково, называется длиной волны и обозначается λ.

· Взаимное усиление или ослабление в пространстве двух или нескольких волн одинаковой длины называют интерференцией волн.

· Волны, в которых частицы среды во время колебаний смещаются в направлении, перпендикулярном к направлению распространения волны, называются поперечными.

· Волны, в которых частицы среды во время колебаний смещаются вдоль направления распространения волны, называются продольными.

Рів1 № 10.12; 10.13; 10.14; 10.24.

Рів2 № 10.30; 10.46; 10.47; 10.48.

Рів3 № 10.55, 10.56; 10.57.


Механическими (или упругими) волнами называют механические возмущения (деформации), распространяющиеся в упругой среде. Тела, которые, воздействуя на упругую среду, вызывают эти возмущения, называют источниками упругих волн.
Среду называют упругой, а деформации, вызываемые внешними воздействиями, называют упругими деформациями, если они полностью исчезают после прекращения этих воздействий. При достаточно малых деформациях все твёрдые тела практически можно считать упругими.
Газу присуща объёмная упругость, т.е. способность сопротивляться изменению его объёма.
По закону Гука для объёмной деформации
, где
– изменение давления газа при малом изменении его объёма;
– модуль объёмной упругости газа.
Для идеального газа значение зависит от вида термодинамического процесса. При очень медленном изменении объёма газа процесс можно считать изотермическим, а при очень быстром – адиабатным.
В первом случае pV = const и после дифференцирования получаем.
Во втором случае pV γ = const и

Жидкости и газы обладают только объёмной упругостью.

Твёрдые тела помимо объёмной упругости обладают упругостью формы, которая проявляется в их сопротивлению деформации сдвига.

В отличие от других видов механического движения среды (например, её течения) распространение упругих волн в среде не связано с переносом вещества.

Упругую волну называют продольной, если частицы среды колеблются в направлении распространения волны. Продольные волны связаны с объёмной деформацией среды и поэтому могут распространяться в любой среде – твёрдой, жидкой и газообразной. Примером таких волн являются звуковые (акустические) волны.
Слышимый звук – 16 Гц < ν < 20 кГц
Инфразвук – ν <16 Гц
Ультразвук – ν > 20 кГц
Гиперзвук – ν >1 ГГц.
Упругую волну называют поперечной, если частицы среды колеблются, оставаясь в плоскостях, перпендикулярных направлению распространения волны. Поперечные волны связаны с деформацией сдвига упругой среды и, следовательно, могут распространяться только в твёрдых телах. Например, волны, распространяющиеся вдоль струн музыкальных инструментов.
Поверхностные волны – волны, распространяющиеся вдоль свободной поверхности жидкости (или поверхности раздела двух несмешивающихся жидкостей).
Уравнением упругой волны называют зависимость от координат и времени скалярных или векторных величин, характеризующих колебания среды при прохождении в ней рассматриваемой волны.
Для волн в твёрдом теле такой величиной может служить вектор смещения частицы среды из положения равновесия или три его проекции на оси координат. В газе или жидкости обычно пользуются избыточным давлением колеблющейся среды.
Линию, касательная к которой в каждой её точке совпадает с направлением распространения волны, т.е. с направлением переноса энергии волной, называют лучом. В однородной среде лучи имеют вид прямых линий.
Упругую волну называют гармонической, если соответствующие ей колебания частиц являются гармоническими. Частоту этих колебаний называют частотой волны.
Волновой поверхностью или фронтом волны называют геометрическое место точек, в которых фаза колебаний имеет одно и то же значение. В однородной изотропной среде волновые поверхности ортогональны лучам.
Волну называют плоской, если её волновые поверхности представляют совокупность плоскостей, параллельных друг другу.
В плоской волне, распространяющейся вдоль оси ОХ, все величины ξ , характеризующие колебательное движение среды, зависят только от времени t и координаты х точки М среды. Если нет поглощения волн в среде, то колебания в т.М отличаются от колебаний в начале координат О, происходящих по закону, только тем, что они сдвинуты по времени на х/υ , где υ – фазовая скорость волны.
Фазовой скоростью волны называют скорость перемещения в пространстве точек поверхности, соответствующей любому фиксированному значению фазы.
Для поперечных волн
а) вдоль натянутой струны, где
F – сила натяжения струны;
ρ – плотность материала струны;
S – площадь поперечного сечения струны.

Б) в изотропном твёрдом теле, где
G – модуль сдвига среды;
ρ – плотность среды.

Для продольных волн
а) в тонком стержне, где
Е – модуль Юнга материала стержня;
ρ – плотность материала стержня.

Б) в жидкости и газе, где
χ – модуль объёмной упругости среды;
ρ – плотность невозмущённой среды.

В) в идеальном газе, где
γ – показатель адиабаты газа;
М – молярная масса газа;
Т – температура газа.

Для плоской гармонической волны, распространяющейся в не- поглощающей среде вдоль положительного направления оси ОХ, уравнение упругой волны имеет вид
или

Расстояние λ = υ.Т, на которое распространяется гармоническая волна за время, равное периоду колебаний, называют длиной волны (расстояние между двумя ближайшими точками среда, в которых разность фаз колебаний равна 2π .
Ещё одной характеристикой гармонической волны является волновое число k, которое показывает, сколько длин волн укладывается на отрезке длиной 2π:
, тогда

.
Волновым вектором называют вектор, по модулю равный волновому числу k и направленный вдоль луча в рассматриваемой точке М среды.
Для плоской волны, распространяющейся вдоль ОХ, поэтому, где – радиус вектор т.М.
Таким образом
.

Уравнение волны можно также записать, используя формулу Эйлера для комплексных чисел, в экспоненциальной форме, удобной для дифференцирования
, где.
Физический смысл имеет только действительная часть комплексной величины, т.е. . Пользуясь для нахождения какой-либо характеристики волны, нужно после выполнения всех математических операций отбросить мнимую часть полученного комплексного выражения.

Волну называютсферической, если её волновые поверхности имеют вид концентрических сфер. Центр этих сфер называется центром волны.
Уравнение расходящейся сферической волны
, где
r – расстояние от центра волны до т.М.
Для гармонической сферической волны
и,

Где A(r) – амплитуда волны; φо – начальная фаза колебаний в центре волны.
Реальные источники волн можно считать точечными (источниками сферических волн), если расстояние r от источника колебаний до рассматриваемых точек среды значительно больше размера источника.
Если r очень велико, то любые малые участки волновых поверхностей можно считать плоскими.

В однородной, изотропной, непоглощающей среде волны плоские и сферические описываются дифференциальным уравнением в частных производных, которое называют волновым уравнением.
, где
– оператор Лапласа или Лапласиан.

11.1. Механические колебания – движение тел или частиц тел, обладающее той или иной степенью повторяемости во времени. Основные характеристики: амплитуда колебаний и период (частота).

11.2. Источники механических колебаний – неуравновешенные силы со стороны различных тел или частей тел.

11.3. Амплитуда механических колебаний – наибольшее смещение тела от положения равновесия. Единица амплитуды – 1 метр (1 м).

11.4. Период колебаний – время, за которое колеблющееся тело совершит одно полное колебание (вперёд и назад, дважды проходя через положение равновесия). Единица периода – 1 секунда (1 с).

11.5. Частота колебаний – физическая величина, обратная периоду. Единица – 1 герц (1 Гц = 1/с). Характеризует количество колебаний, совершаемых телом или частицей за единицу времени.

11.6. Нитяной маятник – физическая модель, в которую включают невесомую нерастяжимую нить и тело, размеры которого пренебрежимо малы по сравнению с длиной нити, находящиеся в силовом поле, как правило, гравитационном поле Земли или другого небесного тела.

11.7. Период малых колебаний нитяного маятника пропорционален квадратному корню из длины нити и обратно пропорционален квадратному корню из коэффициента силы тяжести.

11.8. Пружинный маятник – физическая модель, в которую включают невесомую пружину и прикреплённое к ней тело. Наличие гравитационного поля не является обязательным; такой маятник может колебаться как по вертикали, так и вдоль любого другого направления.

11.9. Период малых колебаний пружинного маятника прямо пропорционален квадратному корню из массы тела и обратно пропорционален квадратному корню из коэффициента жёсткости пружины.

11.10. По отношению к колеблющимся телам выделяют свободные, незатухающие, затухающие, вынужденные колебания и автоколебания.

11.11. Механическая волна – явление распространения механических колебаний в пространстве (в упругой среде) с течением времени. Волна характеризуется скоростью переноса энергии и длиной волны.

11.12. Длина волны – расстояние между ближайшими частицами волны, находящимися в одинаковом состоянии. Единица – 1 метр (1 м).

11.13. Скорость волны определяется как отношение длины волны к периоду колебаний её частиц. Единица – 1 метр в секунду (1 м/с).

11.14. Свойства механических волн: отражение, преломление и дифракция на границе раздела двух сред с различными механическими свойствами, а также интерференция двух и большего количества волн.

11.15. Звуковые волны (звук) – это механические колебания частиц упругой среды с частотами в диапазоне 16 Гц – 20 кГц. Частота звука, излучаемого телом, зависит от упругости (жёсткости) и размеров тела.

11.16. Электромагнитные колебания – собирательное понятие, включающее в зависимости от ситуации изменение заряда, силы тока, напряжения, интенсивности электрического и магнитного поля.

11.17. Источники электромагнитных колебаний – индукционные генераторы, колебательные контуры, молекулы, атомы, ядра атомов (то есть все объекты, где есть движущиеся заряды).

11.18. Колебательный контур – электрическая цепь, состоящая из конденсатора и катушки индуктивности. Контур предназначен для генерирования переменного электрического тока высокой частоты.

11.19. Амплитуда электромагнитных колебаний – наибольшее изменение наблюдаемой физической величины, характеризующей процессы в колебательном контуре и пространстве вокруг него.

11.20. Период электромагнитных колебаний – наименьшее время, за которое происходит возврат значений всех величин, характеризующих электромагнитные колебания в контуре и пространстве вокруг него, к прежним значениям. Единица периода – 1 секунда (1 с).

11.21. Частота электромагнитных колебаний – физическая величина, обратная периоду. Единица – 1 герц (1 Гц = 1/с). Характеризует количество колебаний величин за единицу времени.

11.22. По аналогии с механическими колебаниями, по отношению к электромагнитным колебаниям выделяют свободные, незатухающие, затухающие, вынужденные колебания и автоколебания.

11.23. Электромагнитное поле – совокупность распространяющихся в пространстве постоянно изменяющихся и переходящих друг в друга электрического и магнитного полей – электромагнитная волна. Скорость в вакууме и воздухе 300 000 км/с.

11.24. Длина электромагнитной волны определяется как расстояние, на которое распространятся колебания за время одного периода. По аналогии с механическими колебаниями может быть вычислена произведением скорости волны на период электромагнитных колебаний.

11.25. Антенна – открытый колебательный контур, служащий для испускания или приёма электромагнитных (радио)волн. Длина антенны должна быть тем больше, чем больше длина волны.

11.26. Свойства электромагнитных волн: отражение, преломление и дифракция на границе раздела двух сред с различными электрическими свойствами и интерференция двух и большего количества волн.

11.27. Принципы радиопередачи: наличие высокочастотного генератора несущей частоты, амплитудного или частотного модулятора, передающей антенны. Принципы радиоприема: наличие приемной антенны, настроечного контура, демодулятора.

11.28. Принципы телевидения совпадают с принципами радиосвязи с дополнением двумя следующими: электронное сканирование с частотой порядка 25 Гц экрана, на котором находится передаваемое изображение и синхронная поэлементная передача видеосигнала на видеомонитор.

Муниципальное автономное общеобразовательное учреждение

«Средняя общеобразовательная школа № 1 г. Свободный»

Механические волны

9 класс

Учитель: Маликова

Татьяна Викторовна

Цель урока :

дать учащимся понятие о волновом движении как процессе распространения колебаний в пространстве с течением времени; познакомить с различными видами волн; сформировать представление о длине и скорости распространения волн; показать значение волн в жизни человека.

Образовательные задачи урока:

1.Повторить с учащимися основные понятия, характеризующие волны.

2.Повторить и познакомить учащихся с новыми фактами и примерами использования звуковых волн. Научить заполнять таблицу примерами из выступлений в ходе урока.

3.Научить учащихся использовать межпредметные связи для понимания изучаемых явлений.

Воспитательные задачи урока:

1. Воспитание мировоззренческих понятий (причинно-следственные связи в окружающем мире, познаваемость мира).

2. Воспитание нравственных позиций (любовь к природе, взаимоуважение).

Развивающие задачи урока:

1. Развитие самостоятельности мышления и интеллекта учеников.

2. Развитие коммуникативных навыков: грамотной устной речи.

Ход урока:

    Организационный момент

    Изучение нового материала

Волновые явления, наблюдаемые в повседневной жизни. Распространённость волновых процессов в природе. Различный характер причин, вызывающих волновые процессы. Определение волны. Причины образования волн в твёрдых телах, жидкостях. Основное свойство волн - перенос энергии без переноса вещества. Характерные особенности двух типов волн - продольных и поперечных. Механизм распространения механических волн. Длина волны. Скорость распространения волны. Круговые и линейные волны.

    Закрепление : демонстрация презентации по теме: «Механические

волны»; тест

    Домашнее задание : § 42,43,44

Демонстрации: поперечные волны в шнуре, продольные и поперечные волны на модели

Фронтальный эксперимент: получение и наблюдение круговых и линейных волн

Видеофрагмент: круговые и линейные волны.

Мы переходим к изучению распространения колебаний. Если речь идёт о механических колебаниях, то есть о колебательном движении какой-либо твёрдой, жидкой или газообразной среды, то распространение колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связаны между собой. Эта связь может осуществляться различно. Она может быть обусловлена, в частности, силами упругости, возникающими вследствие деформации среды при её колебаниях. В результате колебание, вызванное каким-либо образом в одном месте, влечёт за собой последовательное возникновение колебаний в других местах, всё более и более удалённых от первоначального, и получается так называемая волна.

А зачем вообще мы изучаем волновое движение? Дело в том, что волновые явления имеют огромное значение для повседневной жизни. К этим явлениям относится распространение звуковых колебаний, обусловленное упругостью окружающего нас воздуха. Благодаря упругим волнам мы можем слышать на расстоянии. Круги, разбегающиеся на поверхности воды от брошенного камня, мелкая рябь на поверхности озёр и огромные океанские волны - это тоже механические волны, хотя и иного типа. Здесь связь смежных участков поверхности воды обусловлена не упругостью, а силой тяжести или же силами поверхностного натяжения.

Цунами - огромные океанские волны. Все о них слышали, но знаете ли вы, почему они образуются?

Возникают они, главным образом, при подводных землетрясениях, когда происходят быстрые смещения участков морского дна. Могут возникать они также в результате взрывов подводных вулканов и сильных обвалов.

В открытом море цунами не только не разрушительны, но, более того, они незаметны. Высота волн цунами не превышает 1-3 м. Если такая волна, обладающая огромным запасом энергии, стремительно пронесётся под кораблём, то тот всего лишь плавно приподнимется, а потом так же плавно опустится. А проносится волна цунами по океанским просторам поистине стремительно, со скоростью 700-1000 км/ч. Для сравнения, с такой же скоростью летит современный реактивный лайнер.

Возникнув, волна цунами способна пройти по океану тысячи и десятки тысяч километров, почти не ослабевая.

Будучи совершенно безопасной в открытом океане, такая волна становится крайне опасной в прибрежной зоне. Всю свою нерастраченную огромную энергию она вкладывает в сокрушительный удар по берегу. При этом скорость волны уменьшается до 100-200 км/ч, высота же возрастает до десятков метров.

Последний раз цунами обрушилось на Индонезию в декабре 2004 года и унесла жизни свыше 120 тысяч человек, более миллиона людей лишились крова.

Вот почему так важно изучать эти явления и, по возможности, предотвращать подобные трагедии.

В воздухе могут распространяться не только звуковые волны, но и разрушительные взрывные волны. Сейсмические станции записывают колебания почвы, вызванные землетрясениями, происходящими за тысячи километров. Это возможно только потому, что от места землетрясения распространяются сейсмические волны - колебания в земной коре.

Огромную роль играют и волновые явления совершенно иной природы, а именно электромагнитные волны. К явлениям, обусловленным электромагнитными волнами, относится, например, свет, значение которого для жизни человека трудно переоценить.

На последующих уроках мы ещё рассмотрим применение электромагнитных волн более подробно. А пока что вернёмся к изучению механических волн.

Процесс распространения колебаний в пространстве с течением времени называется волной . Частицы среды, в которой распространяется волна, не переносятся, они лишь совершают колебания около своих положений равновесия.

В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны.

Опыт. Подвесим за один конец длинный шнур. Если нижний конец шнура быстро отвести в сторону и вернуть обратно, то «изгиб» побежит по шнуру вверх. Каждая точка шнура колеблется перпендикулярно к направлению распространения волны, то есть поперёк направления распространения. Поэтому и волны такого вида называются поперечными.

В результате чего получается передача колебательного движения от одной точки среды к другой и почему она происходит с запаздыванием? Чтобы ответить на этот вопрос, надо разобраться в динамике волны.

Смещение в сторону нижнего конца шнура вызывает деформацию шнура в этом месте. Появляются силы упругости, стремящиеся уничтожить деформацию, то есть, появляются натяжения, которые тянут непосредственно прилегающий участок шнура вслед за участком, смещённым нашей рукой. Смещение этого второго участка вызывает деформацию и натяжение следующего и т.д. Участки шнура обладают массой, и поэтому вследствие инерции набирают или теряют скорость под действием упругих сил не мгновенно. Когда мы довели конец шнура до наибольшего отклонения вправо и начали вести его влево, смежный участок ещё будет продолжать двигаться вправо, и лишь с некоторым запозданием остановится и тоже пойдёт влево. Таким образом, запаздывающий переход колебания от одной точки шнура к другой объясняется наличием у материала шнура упругости и массы.

Направление направление распространения

колебаний волны

Распространение поперечных волн можно показать и с помощью волновой машины. Белые шарики моделируют частицы среды, они могут скользить вдоль вертикальных стержней. Шарики соединены нитями с диском. При вращении диска шарики согласованно движутся вдоль стержней, их движение напоминает волновую картину на поверхности воды. Каждый шарик движется то вверх, то вниз, не смещаясь в стороны.

Теперь обратим внимание, как движутся два крайних шарика, они колеблются с одинаковыми периодом и амплитудой, причём, одновременно оказываются то в верхнем, то в нижнем положении. Говорят, что они колеблются в одинаковой фазе.

Расстояние между ближайшими точками волны, колеблющимися в одинаковой фазе, называется длиной волны. Длину волны обозначают греческой буквой λ.

Теперь попробуем смоделировать продольные волны. При вращении диска шарики колеблются из стороны в сторону. Каждый шарик периодически отклоняется то влево, то вправо от положения равновесия. В результате колебаний частицы то сближаются, образуя сгусток, то расходятся, создавая разрежение. Направление колебаний шарика совпадает с направлением распространения волны. Такие волны называются продольными.

Конечно, и для продольных волн остаётся в полной силе определение длины волны.

Направление

распространения волны

направление колебаний

И продольные, и поперечные волны могут возникать только в упругой среде. Но в любой ли? Как уже было сказано, в поперечной волне происходит сдвиг слоёв друг относительно друга. Но упругие силы при сдвиге возникают только в твёрдых телах. В жидкостях и газах смежные слои свободно скользят друг по другу без появления упругих сил. А раз нет упругих сил, то и образование поперечных волн невозможно.

В продольной волне участки среды испытывают сжатие и разрежение, то есть меняют свой объём. Упругие силы при изменении объёма возникают как в твёрдых телах, так и в жидкостях, и в газах. Поэтому продольные волны возможны в телах, находящихся в любом из этих состояний.

В том, что распространение механических волн происходит не мгновенно, нас убеждают простейшие наблюдения. Каждый видел, как постепенно и равномерно расширяются круги на воде или как бегут морские волны. Здесь мы непосредственно видим, что распространение колебаний из одного места в другое занимает определённое время. Но и для звуковых волн, которые в обычных условиях невидимы, легко обнаружить то же самое. Если вдали произошёл выстрел, гудок паровоза, удар по какому-то предмету, то мы сначала видим эти явления и лишь спустя некоторое время слышим звук. Чем дальше от нас источник звука, тем больше запаздывание. Промежуток времени между вспышкой молнии и ударом грома может доходить иногда до нескольких десятков секунд.

За время, равное одному периоду, волна распространяется на расстояние, равное длине волны, поэтому её скорость определяется формулой:

v= λ /T или v= λν

Задача: рыболов заметил, что за 10 с поплавок совершает на волнах 20 колебаний, а расстояние между соседними гребнями волн 1,2 м. Какова скорость распространения волн?

Дано: Решение:

λ=1,2 м T=t/N v=λN/t

v -? v=1,2*20/10=2,4 м/с

Теперь вернёмся к видам волн. Продольные, поперечные... А какие ещё бывают волны?

Посмотрим фрагмент фильма

    Сферические (круговые) волны

    Плоские (линейные) волны

Распространение механической волны, представляющее собой последовательную передачу движения от одного участка среды к другой, означает тем самым передачу энергии. Эту энергию доставляет источник волны, когда он приводит в движение прилегающий к нему слой среды. От этого слоя энергия передаётся следующему слою и т.д. При встрече волны с различными телами переносимая ею энергия может произвести работу или превратиться в другие виды энергии.

Яркий пример такого переноса энергии без переноса вещества дают нам взрывные волны. На расстояниях во много десятков метров от места взрыва, куда не долетают ни осколки, ни поток горячего воздуха, взрывная волна выбивает стёкла, ломает стены и т.п., то есть производит большую механическую работу. Наблюдать эти явления мы можем по телевизору, например, в военных фильмах.

Перенос волной энергии - это одно из свойств волн. А какие ещё свойства присущи волнам?

    отражение

    преломление

    интерференция

    дифракция

Но обо всём этом мы поговорим на следующем уроке. А сейчас попробуем повторить всё то, что мы узнали о волнах на этом уроке

Вопросы классу + демонстрация презентации по данной теме

И теперь проверим, насколько усвоен вами материал сегодняшнего урока с помощью небольшого теста.

Цель урока : формировать представления о процессе распространения механических волн; ввести физические характеристики волн: длину, скорость.

Ход урока

Проверка домашнего задания методом фронтального опроса

1. Как образуются волны? Что такое волна?

2. Какие волны называются поперечными? Привести примеры.

3. Какие волны называются продольными? Привести примеры.

4. Как движение волны связано с переносом энергии?

Изучение нового материала

1. Рассмотрим, как распространяется поперечная волна вдоль резинового шнура.

2. Поделим шнур на участки, каждый из которых имеет свою массу и упругость. Когда начинается деформация силу упругости можно обнаружить в любом сечении шнура.

Сила упругости стремится к исходному положению шнура. Но так как каждый участок имеет инертность, то колебания не прекращается в положении равновесия, а продолжает движение, пока силы упругости не остановят данный участок.

На рисунке мы видим положения шаров в определенные моменты времени, которые отстоят друг от друга на четверть периода колебаний. Векторы скоростей движения участков, в соответствующие моменты времени показаны стрелками

3. Вместо резинового шнура можно взять цепочку из металлических шаров, подвешенных на нитях. В такой модели упругие свойства и инертные разделены: масса сосредоточена в шарах, а упругость в пружинах. П

4. На рисунке видны продольные волны, распространяющиеся в пространстве в виде сгущения и разряжения частиц.

5. Длина волны и ее скорость – это физические характеристики волнового процесса.

За один период волна распространяется на расстояние, которое будем обозначать – λ –это длина волны.

Расстояние между 2-мя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны.

6. Скорость волны равна произведению длины волны на частоту колебаний.

7. Ѵ = λ/T; так как Т= 1/ν, то Ѵ=λ·ν

8. Периодичность двоякого рода можно наблюдать при распространении волны по шнуру.

Во – первых, колебания совершает каждая частица в шнуре. Если колебания гармонические, то частота и амплитуда одинаковы во всех точках и колебания будут отличаться только фазами.

Во – вторых, форма волны повторяется, через отрезки, длина которых равна – λ.

На рисунке представлен профиль волны в данный момент времени. С течением времени вся эта картина перемещается со скоростью Ѵ слева направо. Через время Δt волна будет иметь вид, изображенный на этом же рисунке. Формула Ѵ= λ·ν – справедлива и для продольных, и для поперечных волн.

Закрепление изученного материала

Задача № 435

Дано: Ѵ= λ/T; T= λ/Ѵ T= 3/6 = 0,5 c

Лучшие статьи по теме