Для школьников и родителей
  • Главная
  • Подготовка 
  • Центр масс тела. Равновесие. Масса тела. Центр тяжести твердого тела и способы нахождения его положения Определение положения центра тяжести твердого тела

Центр масс тела. Равновесие. Масса тела. Центр тяжести твердого тела и способы нахождения его положения Определение положения центра тяжести твердого тела

Если твердое тело находится вблизи поверхности Земли, то к каждой материальной точке этого тела приложена сила тяжести. При этом размеры тела по сравнению с размером Земли настолько малы, что силы земного притяжения, действующие на все частицы тела, можно считать параллельными между собой

Центр (точка С ) системы параллельных сил тяжести всех точек тела называется центром тяжести твердого тела , а сумма сил тяжести всех его материальных точек называется силой тяжести , действующей на него

Координаты центра тяжести твердого тела определяются по формулам:

где - координаты точек приложения сил тяжести , действующих на k -ю материальную точку.

Для однородного тела:

где V - объем всего тела;

V k - объем k -й частицы.

Для однородной тонкой пластины:

где S – площадь пластины;

S k – площадь k- ой части пластины.

Для линии:

где L - длина всей линии;

L k - длина k -ой части линии.

Способы определения координат центров тяжести тел:

Теоретические

Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно или в плоскости симметрии, или на оси, или в центре симметрии.

Разбиение. Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всего тела можно непосредственно вычислить по выше приведенным формулам.

Дополнение. Этот способ является частным случаем способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. В расчеты их включают со знаком «-».

Интегрирование . Когда тело нельзя разбить на составные части, центры тяжести которых известны, используют метод интегрирования, являющийся универсальным.

Экспериментальные

Метод подвешивания. Тело подвешивают за две-три точки, проводя из них вертикали. Точка их пересечении – центр масс.

Метод взвешивания . Тело разными частями помещают на весы, определяя тем самым опорные реакции. Составляют уравнения равновесия, из которых определяют координаты центра тяжести.

С помощью теоретических методов выведены формулы для определения координат центра тяжести наиболее распространенных однородных тел:

Дуга окружности

Выделим в неоднородном твердом теле элементарный объем dV=dx dy dz (рис.5.3). Вес выделенного элемента будет , где – удельный вес в точке тела с соответствующими координатами.

Веса элементов образуют систему сил, параллельных оси аппликат. Модуль равнодействующей

весов элементов называется весом твердого тела, а геометрическая точка приложения равнодействующей – центром тяжести твердого тела. Для вычисления этих величин воспользуемся формулами (5.1) и (5.4), заменив в них суммирование интегрированием по объему, то есть

Величина, стоящая в числителе формулы (5.8), называется статическим моментом веса твердого тела относительно координатной плоскости .

Очевидно, что для однородного тела формула (5.8) принимает вид

Структура формул для вычисления и аналогичная.

В этом случае центр тяжести твердого тела совпадает центром его объема.

Если один из размеров твердого тела существенно меньше двух других, тело называют тяжелой поверхностью . При неизменном весе единицы площади поверхности она является однородной. Формулы для вычисления веса и координат центра тяжести получаются из (5.7) – (5.9) заменой интегралов по объему на интегралы по поверхности. В некоторых случаях поверхность может быть плоской.

Если два размера твердого тела существенно меньше третьего, тело называют тяжелой линией . При неизменном весе единицы длины линии она является однородной. Формулы для вычисления веса и координат центра тяжести получаются из (5.7) – (5.9) заменой интегралов по объему на криволинейные интегралы. В некоторых случаях линия может быть прямой.

Если однородное твердое тело имеет плоскость симметрии, то центр тяжести тела лежит в этой плоскости (сумма статических моментов элементарных сил веса относительно плоскости симметрии равна нулю).

Если однородное твердое тело имеет две плоскости симметрии, то центр тяжести тела принадлежит линии пересечения этих плоскостей.

Если однородное твердое тело имеет три плоскости симметрии, то центр тяжести тела расположен в точке их пересечения.

Если твердое тело может быть мысленно расчленено на элементы, веса и положения центров тяжести которых известны, то вычисление веса твердого тела и положения его центра тяжести может быть выполнено по формулам (5.1) и (5.4). Так, например, рассчитываются вес и координаты центра тяжести строящегося судна.

Если тело имеет вырезы, то они могут быть учтены как элементы отрицательного веса.

Заметим, что в инженерной справочной литературе приводится достаточно большое количество однородных элементов (объемных, плоских и криволинейных), для которых рассчитаны веса и положения центров тяжести. Ниже в таблице приведены некоторые из них.



Вид элемента Объем (площадь) элемента Абсцисса ц.т. Ордината ц.т. Аппликата ц.т.

В некоторых ситуациях положение центра тяжести твердого тела может быть найдено по результатам эксперимента. Например, при подвешивании тела на нити, его центр тяжести располагается на линии нити. Подвесив тело за другую точку, не лежащую на первой линии, найдем положение центра тяжести тела как точку пересечения двух линий. Другим способом, применяемым для нахождения центра тяжести протяженных тел, является так называемая постановка его на «ножи» с параллельными лезвиями. При сближении «ножей» центр тяжести тела стремится остаться между ними и, в пределе, оказывается на линии совпадения лезвий.

В инженерной практике для определения положения центра тяжести тела могут применяться способы, являющиеся комбинацией расчета и эксперимента. В качестве примера приведем вычисление удаления центра тяжести самолета, изображенного на рис.5.4., от его переднего колеса.

На рисунке: Д- динамометр, показывающий величину силы нормального давления переднего колеса, P – вес самолета, – расстояние от переднего колеса до оси задних колес.

Очевидно, что интересующее расстояние от переднего колеса до линии силы веса самолета может быть получено из уравнения суммы моментов сил и P относительно оси задних колес, как

Замечание: если вес Р самолета не известен, то, переставив динамометр Д под задние колеса, можно получить величину силы нормального давления . Тогда

Пример 5.1. Для однородной пластины, имеющей форму кругового сектора с углом 2 при вершине (см. рис. 5.5), найти положение центра тяжести пластины.

Проведем ось абсцисс так, что бы она являлась биссектрисой угла 2 . Тогда, в силу симметрии, ордината центра тяжести равна нулю, т.е. .

Двумя радиусами, элементарный угол между которыми , выделим на пластине элемент, площадь которого приближенно равна площади равнобедренного треугольника

Абсцисса центра тяжести выделенного треугольного элемента равна .

Теперь можно составить выражение для вычисления абсциссы центра тяжести кругового сектора как

Замечание: при вычислении учтено, что центр тяжести однородного плоского тела имеет на плоскости те же координаты, что и у соответствующей плоской фигуры.

Пример 5.2. Для тонкой однородной пластины сложной формы, размеры которой указаны на рис.5.6, найти положение центра тяжести.

Мысленно расчленим пластину на три элемента: прямоугольник, треугольник и круг. Для каждого из элементов найдем площадь и координаты центра тяжести:

Тогда для пластины координаты центра тяжести можно вычислить по формулам:

При вычислении отверстие трактовалось как присоединение круга отрицательного веса.

Центром тяжести твердого тела называется геометрическая точка, жестко связанная с этим телом, и являющаяся центром параллельных сил тяжести, приложенных к отдельным элементарным частицам тела (рисунок 1.6).

Радиус-вектор этой точки

Рисунок 1.6

Для однородного тела положение центра тяжести тела не зависит от материала, а определяется геометрической формой тела.

Если удельный вес однородного тела γ , вес элементарной частицы тела

P k = γΔV k (P = γV ) подставить в формулу для определения r C , имеем

Откуда, проецируя на оси и переходя к пределу, получаем координаты центра тяжести однородного объема

Аналогично для координат центра тяжести однородной поверхности площадью S (рисунок 1.7, а)

Рисунок 1.7

Для координат центра тяжести однородной линии длиной L (рисунок 1.7, б)

Способы определения координат центра тяжести

Исходя из полученных ранее общих формул, можно указать способы определения координат центров тяжести твердых тел:

1 Аналитический (путем интегрирования).

2 Метод симметрии . Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

3 Экспериментальный (метод подвешивания тела).

4 Разбиение . Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.8) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1 ) и C 2 (x 2 , y 2 ) . Тогда координаты центра тяжести тела равны

Рисунок 1.8

5Дополнение (метод отрицательных площадей или объемов). Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9):

Рисунок 1.9

Центры тяжести простейших фигур

Рисунок 1.10

1 Треугольник

Центр тяжести площади треугольник совпадает с точкой пересечения его медиан (рисунок 1.10, а).

DM = MB , CM = (1/3)AM .

2 Дуга окружности

Дуга имеет ось симметрии (рисунок 1.10, б). Центр тяжести лежит на этой оси, т.е. y C = 0 .

dl – элемент дуги, dl = Rdφ , R – радиус окружности, x = Rcosφ , L = 2αR ,

Следовательно:

x C = R(sinα/α) .

3 Круговой сектор

Сектор радиуса R с центральным углом 2α имеет ось симметрии Ox , на которой находится центр тяжести (рисунок 1.10, в).

Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса (2/3)R .

Центр тяжести сектора совпадает с центром тяжести дуги AB :

14. Способы задания движения точки.

При векторном способе задания движения положение точки определяется радиус-вектором, проведенным из неподвижной точки в выбранной системе отсчета.

При координатном способе задания движения задаются координаты точки как функции времени:

Это параметрические уравнения траектории движущейся точки, в которых роль параметра играет время t . Чтобы записать ее уравнение в явной форме, надо исключить из них t .

При естественном способе задания движения задаются траектория точки, начало отсчета на траектории с указанием положительного направления отсчета, закон изменения дуговой координаты: s=s(t) . Этим способом удобно пользоваться, если траектория точки заранее известна.

15. 1.2 Скорость точки

Рассмотрим перемещение точки за малый промежуток времени Δt :

средняя скорость точки за промежуток времени Dt . Скорость точки в данный момент времени

Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения.

Просмотр: эта статья прочитана 11269 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Обзор

Рычаг - это твердое тело, имеющее недвижимую ось вращения и находящееся под действием сил, лежащих в плоскости, перпендикулярной этой оси.

Если рычаг находится в состоянии покоя, то алгебраическая сумма моментов всех сил, приложенных к рычагу относительно опорной точки, равняется нулю

Произвольная плоская система сил - это система сил, линии действия которых расположены в плоскости независимо.

Методом Пуансо в центре приведения О будет получена система сил и система пар, моменты каждой из которых равняют моментам соответствующей силы относительно центра приведения.

Главным вектором системы называется вектор, который равняется геометрической сумме всех сил системы.

Главным моментом системы относительно центра О в плоскости называется алгебраическая сумма моментов сил системы относительно центра приведения О.

Главный вектор не зависит от выбора центра приведения О. Главный момент сил зависит от центра приведения.

Основная теорема статики о приведении системы сил к данному центру : Какая-либо плоская произвольная система сил, действующих на абсолютно твердое тело, при приведении к произвольно избранному центру О, может быть заменена одной силой, равняющейся главному вектору системы и приложенной в центре приведения О, и одной парой с моментом, равняющемуся главному моменту системы относительно центра О.

Рассмотрены случаи приведения плоской системы сил к более простому виду

Условия равновесия произвольной плоской системы сил.

1. Геометрические условия равновесия : для равновесия плоской произвольной системы сил необходимо и достаточно, чтобы главный вектор и главный момент системы равнялись нулю

2. Аналитические условия равновесия .

Основная форма условий равновесия : Для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы проекций всех сил на координатные оси и сумма их моментов относительно любого центра, который лежит в плоскости действия сил, равнялись нулю.

Вторая форма условий равновесия : Для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы моментов всех сил относительно любых двух центров А и В и сумма их проекций на ось, не перпендикулярную прямой АВ, равнялись нулю.

Третья форма условий равновесия (уравнение трех моментов) : Для равновесия плоской произвольной системы сил необходимо и достаточно, чтобы суммы моментов всех сил относительно любых трех центров А, В и С, не лежащих на одной прямой, равнялись нулю.

Центр параллельных сил

Система параллельных сил, направленных в одну сторону, не может быть уравновешена или приводиться к паре сил, она всегда имеет равнодействующую.

Линия действия равнодействующей параллельна силам. Положение точки ее приложение зависит от величин и положения точек приложения сил системы.

Центр параллельных сил - точка С точка приложения равнодействующей системы параллельных сил.
Положение центра параллельных сил - точки С, определяется координатами этой точки

Центр тяжести твердого тела и его координаты

Центр тяжести тела - неизменно связанная с этим телом геометрическая точка, в которой приложена равнодействующая сил тяжести отдельных частиц тела, т.е. вес тела в пространстве.

Координаты центра тяжести определяются аналогично координатам центра параллельных сил С (), составленных силами тяжести частиц тела.

Положение центра тяжести однородного тела зависит только от его геометрической формы и размеров, и не зависит от свойств материала, из которого тело выполнено.

Сумма произведений элементарных площадей, входящих в состав плоской фигуры, на алгебраические значения их расстояний до некоторой оси, называется статическим моментом площади плоской фигуры.

Статический момент площади плоской фигуры равняется произведению площади фигуры на алгебраическое расстояние от центра тяжести до этой оси. Единица измерения статического момента [см3].
статический момент площади плоской фигуры относительно оси, которая проходит через центр тяжести фигуры, равняется нулю.

Вес тела это равнодействующая сил тяжести отдельных частиц тела.

Способы определения положения центра тяжести .

  1. Метод симметрии : Если однородное тело имеет плоскость, ось или центр симметрии, то центр тяжести лежит соответственно или в плоскости симметрии, или на оси симметрии, или в центре симметрии.Центр тяжести линии длиной - по середине. Центр тяжести окружности (или круга) радиуса - в его центре, т.е. в точке пересечения диаметров. Центр тяжести параллелограмма, ромба или параллелепипеда - в точке пересечения диагоналей. Центр тяжести правильного многоугольника - в центре вписанного или описанный круга.
  2. Метод разбивки : Если тело можно разбить на конечное количество элементов (объемов, плоскостей, линий), для каждой из которых положение центра тяжести известно, то координаты центра тяжести всего тела можно определить зная значения для элементов непосредственно по формулам
  3. Метод дополнения (отрицательных плоскостей): Если тело имеет вырезанные элементы, то при разбивке на элементы, вырезанная часть (площадь, объем) отнимаются из общей, т.е. вырезанным элементам даются отрицательные значения площади или объема

Формат: pdf

Размер: 700 КВ

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении

Первым открытием Архимеда в механике было введение понятия центра тяжести, т.е. доказательство того, что в любом теле есть единственная точка, в которой можно сосредоточить его вес, не нарушив равновесного состояния.

Центр тяжести тела – точка твердого тела, через которую проходит равнодействующая всех сил тяжести, действующих на элементарные массы этого тела при любом его положении в пространстве.

Центром тяжестимеханической системы называется точка, относительно которой суммарный момент сил тяжести, действующих на все тела системы, равен нулю.

Проще говоря, центр тяжести – это точка, к которой приложена сила тяжести независимо от положения самого тела. Если тело однородное, центр тяжести обычно расположен в геометрическом центре тела. Таким образом, центр тяжести в однородном кубе или однородном шаре совпадает с геометрическим центром этих тел.

Если размеры тела малы по сравнению с радиусом Земли, то можно считать, что силы тяжести всех частиц тела образуют систему параллельных сил. Их равнодействующая называется силой тяжести , а центр этих параллельных сил – центром тяжести тела .

Координаты центра тяжести тела могут быть определены по формулам (рис. 7.1):

, , ,

где – вес телаx i , y i , z i – координаты элементарной частицы, весом Р i ;.

Формулы для определения координат центра тяжести тела являются точными, строго говоря, лишь при раз­биении тело на бесконечное число бесконечно малых элементарных частиц весом Р i . Если же число частиц, на которые мысленно разбито тело, конечное, то в общем случае эти формулы будут приближенными, так как координаты x i , y i , z i при этом мо­гут быть определены лишь с точностью до размеров частиц. Чем меньше эти частицы, тем меньше будет ошибка, которую мы сделаем при вычислении ко­ординат центра тяжести. К точным выражениям можно прийти лишь в ре­зуль­тате предельного перехода, когда размер каждой частицы стремится к нулю, а число их неограниченно возрастает. Как известно, такой предел называется оп­ределенным интегралом. Поэтому фактическое определение координат центров тяжести тел в общем случае тре­бует замены сумм соответствующими им интегралами и применения методов интегрального исчисления.

Если масса внутри твердого тела или механической системы распределяется неоднородно, то центр тяжести смещается в ту часть, где оно тяжелее.

Центр тяжести тела не всегда даже может находиться внутри самого тела. Так, например, центр тяжести бумеранга находится где-то посередине между оконечностей бумеранга, но вне самого тела бумеранга.

Для крепления грузов положение центра тяжести очень важно. Именно в эту точку приложены силы тяжести и инерционные силы, действующие на груз в процессе движения. Чем выше находится центр тяжести тела или механической системы, тем более оно склонно к опрокидыванию.

Центр тяжести тела совпадает с центром масс.

Лучшие статьи по теме