Для школьников и родителей
  • Главная
  • Подготовка 
  • Изменение значений геометрических характеристик сечения при повороте осей. Главные оси инерции и главные моменты инерции Понятие прямого, чистого и косого изгиба. Правила знаков для внутренних силовых факторов при изгибе. Статические дифференциальные и ин

Изменение значений геометрических характеристик сечения при повороте осей. Главные оси инерции и главные моменты инерции Понятие прямого, чистого и косого изгиба. Правила знаков для внутренних силовых факторов при изгибе. Статические дифференциальные и ин

Рассмотрим плоскую фигуру с известными геометрическими характеристиками 1 Х , 1 у и 1 ху относительно осей х и у (рис. 3.3). Определим с их помощью значения аналогичных геометрических характеристик относительно осей и и v, которые составляют с начальной системой угол а.

Вычислим координаты центра тяжести бесконечно малого элемента площади dA в новой координатной системе и и v:

Рис. 3.3.

Момент инерции относительно повернутой оси Ои будет равен

Используя обозначения геометрических характеристик относительно исходных осей, получим

Для двух остальных геометрических характеристик формулы получаем аналогично:

Полученные формулы преобразуем с помощью тригонометрических формул

После преобразования формулы для вычисления осевых н центробежного моментов инерции при повороте осей приобретают вид

Главные оси и главные моменты инерции

Ранее было отмечено, что сумма осевых моментов является постоянной величиной. Легко убедиться в том, что это положение следует также и из формул (3.22):

Оси, относительно которых моменты инерции принимают максимальное и минимальное значения, называются главными осями главными моментами инерции.

При повороте осей величины осевых моментов изменяются, поэтому должна существовать пара взаимно перпендикулярных главных осей, относительно которых моменты инерции достигают минимального и максимального значений. Докажем это положение. Для этого исследуем на экстремум осевой момент инерции 1 и:

Поскольку выражение в скобках должно равняться нулю, получаем формулу, позволяющую определить положение одной из главных осей:

Угол а 0 , отсчитываемый от оси Ох против часовой стрелки, определяет положение главной оси относительно оси Ох. Докажем, что перпендикулярная этой оси ось также является главной. Подставим в выражение для

производной угол а 0 + -:

Таким образом, главные оси являются взаимно перпендикулярными осями.

Обратим внимание на то, что выражение в скобках согласно третьей формуле (3.22) соответствует центробежному моменту. Таким образом, мы доказали, что центробежный момент инерции относительно главных осей равен нулю.

Воспользуемся этим результатом и выведем формулу для вычисления главных моментов инерций. Для этого вторую и третью формулы (3.22) перепишем в следующем виде:

Возводя в квадрат и складывая правые и левые части обоих уравнений, получаем

Отсюда следует формула для вычисления двух главных моментов инерции:

В формуле (3.25) знак «плюс» соответствует максимальному главному моменту инерции, а знак «минус» - минимальному его значению.

В отдельных частных случаях положение главных осей можно определить без расчетов. Так, если сечение симметричное, то ось симметрии является одной из главных осей, а второй осью является любая ось, ей перпендикулярная. Это положение непосредственно следует из равенства нулю центробежного момента инерции относительно осей, одна из которых является осью симметрии.

Среди всех пар главных осей можно выделить особую пару, обе оси которой проходят через центр тяжести сечения.

Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями , а моменты инерции относительно таких осей - главными центральными моментами инерции.

Как было уже отмечено, поворот системы координат вызывает изменение геометрических характеристик плоских фигур. Можно показать, что совокупность геометрических характеристик, принадлежащих данному сечению, описывается симметричным тензором, называемым тензором инерции сечения, который можно записать в виде матрицы:

Первый инвариант тензора инерции, представляющий собой сумму осевых моментов инерции, был нами получен ранее (см. формулу (3.23)). Второй инвариант тензора инерции имеет вид

Эта величина будет использована при получении общего решения для изгиба стержня.

Геометрические характеристики сложных составных поперечных сечений

Если поперечное сечение образовано совокупностью простейших, то в соответствии со свойствами определенных интегралов геометрическая характеристика такого сечения равна сумме соответствующих характеристик отдельных составных сечений (рис. 3.10).

Рис. 10.

Таким образом, для вычисления моментов инерции сложной фигуры необходимо разбить её на ряд простых фигур, вычислить моменты инерции этих фигур и затем просуммировать эти моменты инерции

Изменение моментов инерции при повороте осей

Найдем зависимость межу моментами инерции относительно осей и моментами инерции относительно осей, повернутых на угол (рис. 3.11). Пусть и положительный угол отсчитывается от оси против часовой стрелки.

Рис. 11. Поворот осей координат

Для решения поставленной задачи найдем зависимость между координатами бесконечно малой площадки в исходных и повернутых осях

Теперь определим моменты инерции относительно осей

Аналогично

Для центробежного момента


Складывая (3.28) и (3.29), получаем

Вычитая (3.28) из (3.29), получаем

Формула (3.31) показывает, что сумма моментов инерции относительно любых взаимно перпендикулярных осей не меняется при их повороте.

Формула (3.32) может быть использована для вычисления центробежного момента инерции относительно осей по известным осевым моментам инерции относительно осей и.

Главные оси инерции и главные моменты инерции

При изменении угла (рис. 3.10) моменты инерции (3.280 - (3.31) изменяются. Найдем значение угла, при котором и имеют экстремальное значение. Для этого возьмем от и первую производную по и приравниваем ее нулю:

Эта формула определяет положение двух осей, относительно которых осевой момент инерции максимален, а относительно другой минимален. Такие оси называют главными. Моменты инерции относительно главных осей называют главными моментами инерции.

Значения главных моментов инерции найдем из формул (3.28) и (3.29, подставив в них из формулы (3.33), при этом используем известные формулы тригонометрии для функций двойных углов. После преобразования получим формулу для определения главных моментов инерции:

Покажем теперь, что относительно главных осей центробежный момент инерции равен нулю. Действительно, приравнивая по формуле (3.30) нулю, получаем

откуда для вновь получается формула (3.33)

Таким образом, главными осями называют оси, обладающие следующими свойствами:

Центробежный момент инерции относительно этих осей равен нулю.

Моменты инерции относительно главных осей имеют экстремальные значения (относительно одной - максимум, относительно другой - минимум).

Главные оси, приходящие через центр тяжести сечения, называются главными центральными осями.

Во многих случаях удается сразу определить положение главных центральных осей. Если фигура имеет ось симметрии, то она является одной из главных центральных осей, вторая проходит через центр тяжести сечения перпендикулярно первой. Это следует из того обстоятельства, что относительно оси симметрии и любой оси, ей перпендикулярной, центробежный момент инерции равен нулю.

Главные оси и главные моменты инерции

При повороте осей координат центробежный момент инерции меняет знак, а следовательно, существует такое положение осей, при котором центробежный момент равен нулю.

Оси, относительно которых центробежный момент инерции сечения обращается в нуль, называются главными осями , а главные оси, проходящие через центр тяжести сечения - главными центральными осями инерции сечения .

Моменты инерции относительно главных осей инерции сечения называются главными моментами инерции сечения и обозначаются через I1 и I2 причем I1>I2 . Обычно, говоря о главных моментах, подразумевают осевые моменты инерции относительно главных центральных осей инерции.

Предположим, что оси u и v главные. Тогда

Отсюда

.

(6.32)

Уравнение (6.32) определяет положение главных осей инерции сечения в данной точке относительно исходных осей координат. При повороте осей координат изменяются также и осевые момента инерции. Найдем положение осей, относительно которых осевые моменты инерции достигают экстремальных значений. Для этого возьмем первую производную от Iu по α и приравняем ее нулю:

отсюда

.

К тому же результату приводит и условие dIv / dα. Сравнивая последнее выражение с формулой (6.32), приходим к заключению, что главные оси инерции являются осями, относительно которых осевые моменты инерции сечения достигают экстремальных значений.

Для упрощения вычисления главных моментов инерции формулы (6.29) - (6.31) преобразовывают, исключая из них с помощью соотношения (6.32) тригонометрические функции:

.

(6.33)

Знак плюс перед радикалом соответствует большему I1 , а знак минус - меньшему I2 из моментов инерции сечения.

Укажем на одно важное свойство сечений, у которых осевые моменты инерции относительно главных осей одинаковы. Предположим, что оси y и z главные (Iyz =0), а Iy = Iz . Тогда согласно равенствам (6.29) - (6.31) при любом угле поворота осей α центробежный момент инерции Iuv =0, а осевые Iu=Iv.

Итак, если моменты инерции сечения относительно главных осей одинаковы, то все оси, проходящие через ту же точку сечения, являются главными и осевые моменты инерции относительно всех этих осей одинаковы: Iu=Iv=Iy=Iz. Этим свойством обладают, например, квадратные, круглые, кольцевые сечения.

Формула (6.33) аналогична формулам (3.25) для главных напряжений. Следовательно, и главные моменты инерции можно определять графическим способом методом Мора.

Изменение моментов инерции при повороте осей координат

Предположим, что задана система осей координат и известны моменты инерции Iz , Iy и Izy фигуры относительно этих осей. Повернем оси координат на некоторый угол α против часовой стрелки и определим моменты инерции той же фигуры относительно новых осей координат u и v.

Рис. 6.8.

Из рис. 6.8 следует, что координаты какой-либо точки в обеих системах координат связаны между собой соотношениями

Момент инерции

Следовательно,

(6.29)

(6.30)

Центробежный момент инерции

.

(6.31)

Из полученных уравнений видно, что

,

т. е. сумма осевых моментов инерции при повороте осей координат остается величиной постоянной. Поэтому, если относительно какой-либо оси момент инерции достигает максимума, то относительно перпендикулярной ей оси он имеет минимальное значение.

Рассмотрим изменение моментов инерции при повороте осей координат. Положим, даны моменты инерции некоторого сечения относительно осейx и y (не обязательно центральных). Требуется определитьJ u , J v , J uv - моменты инерции относительно осейu , v , повернутых на угола. Так проекцияОАВС равна проекции замыкающей:

u = y sin а + x cos a (1)

v=y cos a – x sin a (2)

Исключим u,vв выражениях моментов инерции:

J u = v 2 dF ; J v = u 2 dF ; J uv = uvdF . Подставив в выражения (1) и (2) получим:

J u =J x cos 2 a – J xy sin 2a + J y sin 2 a

J v =J x sin 2 a + J xy sin 2a + J y cos 2 a (3)

J uv =J xy cos2a + sin 2a(J x -J y )/2

J u + J v = J x + J y = F (y 2 + x 2 ) dF => Сумма осевых моментов инерции относительно 2х взаимно перпенд. Осей не зависит от углаа. Заметим, чтоx 2 + y 2 = p 2 . p - расстояние от начала координат до элементарной площадки. Т.о.J x + J y = J p .(4)

J p =∫ F p 2 dF полярный момент, не зависит от поворотах,у

2)Т. Кастелиано.

Частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы.

Рассмотрим стержень, нагруженный произвольной системой сил и закрепленный как показано на рис.

Пусть потенциальная энергия деформации, накопленная в объеме тела в результате работы внешних сил, равна U. Силе F n дадим приращение d F n . Тогда потенциальная энергия U получит приращение
и примет видU+
.(5.4)

Изменим теперь порядок приложения сил. Приложим сначала к упругому телу силу dPn. В точке приложения этой силы возникнет соответственно малое перемещение, проекция кото­рого на направление силы dPn равна. dδ n . Тогда работа силы dPn оказывается равной dPn· dδ n /2. Теперь приложим всю си­стему внешних сил. При отсутствии силы dPn потенциальная энергия системы снова приняла бы значение U . Но теперь эта энергия изменится на величину дополнительной работы dPn ·δ n которую совершит сила dPn на перемещении δ n , вызванном всей системой внешних сил. Величина δ n опять представля­ет собой проекцию полного перемещения на направление силы Рn.

В итоге при обратной последовательности приложения сил выражение для потенциальной энергии получаем в виде

(5.5)

Приравниваем это выражение выражению (5.4) и, отбрасывая произведение dPn· dδ n /2 как величину высшего порядка мало­сти, находим

(5.6)

Билет 23

Кому-то не повезло

Билет 24

1) Кручение стержня прямоугольного поперечного сечения (определение напряжений и перемещений). Кручение бруса прямоугольного сечения, напряжения в поперечном сечении

При этом нарушается закон плоских сечений, сечения некруглой формы при кручении искривляются – депланация поперечного сечения.

Эпюры касательных напряжений прямоугольного сечения.

;
, Jk и Wk - условно называют моментом инерции и моментом сопротивления при кручении. Wk=hb2,

Jk= hb3, Максимальные касательные напряженияmax будут посредине длинной стороны, напряжения по середине короткой стороны:=max, коэффициенты:,,приводятся в справочниках в зависимости от отношения h/b (например, при h/b=2,=0,246;=0,229;=0,795.

При расчете бруса на кручение (вала) требуется решить две ос­новные задачи. Вопервых, необходимо определить напряжения, возникающие в брусе, и, вовторых, надо найти угловые перемеще­ния сечений бруса в зависимости от величин внешних моментов.

Лучшие статьи по теме