Для школьников и родителей
  • Главная
  • Проекты
  • Белки в отличие от нуклеиновых кислот участвуют. Химический состав и структура нуклеиновых кислот. Участие в биосинтезе белка. Белки, в отличие от нуклеиновых кислот

Белки в отличие от нуклеиновых кислот участвуют. Химический состав и структура нуклеиновых кислот. Участие в биосинтезе белка. Белки, в отличие от нуклеиновых кислот

Подобно белкам, нуклеиновые кислоты - биополимеры, а их функция заключается в хранении, реализации и передаче генетической (наследственной) информации в живых организмах.

Существует два типа нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза - в ДНК, рибоза - в РНК) и остаток фосфорной кислоты.

В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, - аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований - аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований.

Молекула ДНК может включать огромное количество нуклеотидов - от нескольких тысяч до сотен миллионов. В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей, соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.

Молекулы РНК, как правило, одноцепочечные (в отличие от ДНК) и содержат значительно меньшее число нуклеотидов.

В биосинтезе белка участвуют следующие нуклеиновые кислоты:

1. ДНК - в ней закодирована последовательность аминокислотных остатков в белке и она служит матрицей для синтеза иРНК.

2. Информационная РНК передает информацию с ДНК на рибосомы.

3. Рибосомальная РНК - является структурным компонентом рибосом, которые представляют собой "машины" собирающие белок из отдельных аминокислот в точном соответствии с кодом иРНК.

4. Транспортная РНК - участвует в узнавании кодона (три нуклеотида на иРНК кодирующие 1 аминокислоту) и транспортирует нужные аминокислоты к месту синтеза белка.

Вопрос 38. Нуклеиновые кислоты и белки

1. Функции вирусных нуклеиновых кислот

2. Вирусные белки

3. Процессы взаимодействия вируса с клеткой макроорганизма

1.Функция вирусных нуклеиновых кислот независимо от их типа состоит в хранении и передаче генетической информации. Ви­русные ДНК бывают линœейными (как у эукариотов) или кольцевыми (как у прокариотов), однако в отличие от ДНК тех и других она должна быть представлена однонитевой молеку­лой. Вирусные РНК имеют разную организацию (линœейные, кольцевые, фрагментированные, однонитевые и двунитевые), они бывают представлены плюс- или минус-нитями. Плюс-нити функционально тождественны и-РНК, т. е. спо­собны транслировать закодированную в них генетическую ин­формацию на рибосомы клетки хозяина.

Минус-нити не могут функционировать как и-РНК, и для трансляции содержащейся в них генетической информации необходим синтез комплементарной плюс-нити. РНК плюс-нитевых вирусов, в отличие от РНК минус-нитевых, имеют специфические образования, необходимые для узнавания рибосомами. У двунитевых как ДНК-, так и РНК-содержащих вирусов информация обычно записана только в одной цепи, чем достигается экономия генетического материала. 2. Вирусные белки по локализации в вирионе делятся:

‣‣‣ на капсидные;

‣‣‣ белки суперкапсидной оболочки;

‣‣‣ геномные.

Белки капсидной оболочки у нуклеокапсидных вирусов вы­полняют защитную функцию - защищают вирусную нуклеино­вую кислоту от неблагоприятных воздействий - и рецептор-ную (якорную) функцию, обеспечивая адсорбцию вирусов на клетках хозяина и проникновение в них.

Белки суперкапсидной оболочки, как и белки капсидной обо­лочки, выполняют защитную и рецепторную функции. Это сложные белки - липо- и гликопротеиды. Некоторые из этих белков могут формировать морфологические субъединицы в виде шипованных отростков и обладают свойствами гемагглю-тининов (вызывают агглютинацию эритроцитов) или нейрами-нидазы (разрушают нейраминовую кислоту, входящую в состав клеточных стенок).

Отдельную группу составляют геномные белки, они ковалентно связаны с геномом и образуют с вирусной нуклеиновой кисло­той рибо- или дезоксирибонуклеопротеиды. Основная функ­ция геномных белков - участие в репликации нуклеиновой кислоты и реализации содержащейся в ней генетической ин­формации, к ним относятся РНК-зависимая РНК-полимераза и обратная транскриптаза.

В отличие от белков капсидной и суперкапсидной оболочки это не структурные, а функциональные белки. Все вирусные белки выполняют и функцию антигенов, по­скольку являются продуктами вирусного генома и, соответст­венно, чужеродными для организма хозяина. Представители царства Vira по типу нуклеиновой кислоты де­лятся на 2 подцарства - рибовирусные и дезоксирибовирусные. В подцарствах выделяют семейства, рода и виды. Принад­лежность вирусов к тому или иному семейству (всœего их 19) оп­ределяется :

‣‣‣ строением и структурой нуклеиновой кислоты;

‣‣‣ типом симметрии нуклеокапсида;

‣‣‣ наличием суперкапсидной оболочки. Принадлежность к тому или иному родуи виду связана с другими биологическими свойствами вирусов :

‣‣‣ размером вирионов (от 18 до 300 нм);

‣‣‣ способностью размножаться в культурах ткани и курином эм­брионе;

‣‣‣ характером изменений, происходящих в клетках под воздейст­вием вирусов;

‣‣‣ антигенными свойствами;

‣‣‣ путями передачи;

‣‣‣ кругом восприимчивых хозяев.

Вирусы - возбудители болезней человека относятся к 6 ДНК- содержащим семействам (поксвирусы, герпесвирусы, гепаднави-русы, аденовирусы, паповавирусы, парвовирусы) и 13 семействам РНК-содержащих вирусов (реовирусы, тогавирусы, флавирусы, коронавирусы, парамиксовирусы, ортомиксовирусы, рабдовирусы, бунъявирусы, аренавирусы, ретровирусы, пикорнавиру-сы, калицивирусы, филовирусы).

3. Взаимодействие вируса с клеткой - это сложный процесс, ре­зультаты которого бывают различны. По этому признаку (конечный результат) можно выделить 4 типа взаимодействия вирусов и клеток:

%/ продуктивная вирусная инфекция - это такой тип взаимодейст­вия вируса с клеткой, при котором происходит репродукция ви­русов, а клетка погибает (для бактериофагов такой тип взаи­модействия с клеткой называют литическим). Продуктивная вирусная инфекция лежит в базе острых вирусных заболева­ний, а также в базе условных латентных инфекций, при ко­торых погибают не всœе клетки пораженного органа, а только часть, а остальные неповрежденные клетки этого органа ком­пенсируют его функции, вследствие чего заболевание некото­рое время не проявляется, пока не наступит декомпенсация;

‣‣‣ абортивная вирусная инфекция - это такой тип взаимодействия вируса с клеткой, при котором репродукция вирусов не происхо­дит, а клетка избавляется от вируса, функции ее при этом не нарушаются, поскольку это происходит только в процессе ре­продукции вируса;

‣‣‣ латентная вирусная инфекция - это такой тип взаимодействия вируса с клеткой, при котором происходит репродукция и виру­сов, и клеточных компонентов, но клетка не погибает; при этом клеточные синтезы преобладают, и в связи с этим клетка достаточно длительно сохраняет свои функции - данный механизм лежит в базе безусловных латентных вирусных инфекций;

‣‣‣ вирус-индуцированные трансформации - это такой тип взаимо­действия вируса с клеткой, при котором клетки, пораженные вирусом, приобретают новые, ранее не присущие им свойства. Геном вируса или его часть встраивается в геном клетки, и ви­русные гены превращаются в группу клеточных генов. Этот интегрированный в хромосому клетки-хозяина вирусный ге­ном принято называть провирусом, а такое состояние клеток обозна­чается как вирогения.

При любом из указанных типов взаимодействия вирусов и клеток можно выделить процессы, направленные на то, чтобы доставить вирусную нуклеиновую кислоту в клетку, обеспечить условия и механизмы ее репликации и реализации содержа­щейся в ней генетической информации.

Вопрос 39. Особенности репродукции вирусов

1. Периоды осуществления продуктивной вирусной инфекции

2. Репликация вируса

3. Трансляция

1.Продуктивная вирусная инфекция осуществляется в 3 периода :

‣‣‣ начальный период включает стадии адсорбции вируса на клетке, проникновения в клетку, дезинтеграции (депротеинизации) или "раздевания" вируса. Вирусная нуклеиновая кислота была доставлена в соответствующие клеточные структуры и под дей­ствием лизосомальных ферментов клетки освобождается от защитных белковых оболочек. В итоге формируется уникаль­ная биологическая структура: инфицированная клетка содер­жит 2 генома (собственный и вирусный) и 1 синтетический аппарат (клеточный);

‣‣‣ после этого начинается вторая группа процессов репродукции вируса, включающая средний и заключительный периоды, во время которых происходят репрессия клеточного и экспрессия вирусного генома. Репрессию клеточного генома обеспечивают низкомолекулярные регуляторные белки типа гистонов, синтезируемые в любой клетке. При вирусной инфекции данный про­цесс усиливается, теперь клетка представляет собой структуру, в которой генетический аппарат представлен вирусным геномом, а синтетический аппарат - синтетическими системами клетки.

2. Дальнейшее течение событий в клетке направлено на репликацию вирусной нуклеиновой кислоты (синтез генетического материала для новых вирионов) и реализацию содержащейся в ней генети­ческой информации (синтез белковых компонентов для новых вирионов). У ДНК-содержащих вирусов, как в прокариотиче-ских, так и в эукариотических клетках, репликация вирусной ДНК происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. При этом у однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить - так назы­ваемая репликативная форма, которая служит матрицей для дочерних молекул ДНК.

3. Реализация генетической информации вируса, содержащейся в ДНК, происходит следующим образом: при участии ДНК-зави­симой РНК-полимеразы синтезируются и-РНК, которые по­ступают на рибосомы клетки, где и синтезируются вирусспе-цифические белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина, это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.

У РНК-содержащих вирусов процессы репликации их генома, транскрипции и трансляции генетической информации осуще­ствляются иными путями. Репликация вирусных РНК, как минус-, так и плюс-нитей, осуществляется через репликативную форму РНК (комплементарную исходной), синтез которой обеспечивает РНК-зависимая РНК-полимераза - это геном­ный белок, который есть у всœех РНК-содержащих вирусов. Ре­пликативная форма РНК минус-нитевых вирусов (плюс-нить) служит не только матрицей для синтеза дочерних молекул ви­русной РНК (минус-нитей), но и выполняет функции и-РНК, т. е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляцию).

У плюс-нитевых РНК-содержащих вирусов функцию трансля­ции выполняют ее копии, синтез которых осуществляется че­рез репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.

У некоторых РНК-содержащих вирусов (реовирусы) имеется со­вершенно уникальный механизм транскрипции. Он обеспечива­ется специфическим вирусным ферментом - ревертазой (обрат­ной транскриптазой) и принято называть обратной транскрипцией. Суть ее состоит в том, что вначале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется,вторая нить и формируется двунитевой ДНК-транскрипт. С не­го обычным путем через образование и-РНК происходит реа­лизация информации вирусного генома.

Результатом описанных процессов репликации, транскрипции и трансляции является образование дочерних молекул вирусной нуклеиновой кислоты и вирусных белков, закодированных в геноме вируса.

После этого наступает третий, заключительный период взаимо­действия вируса и клетки. Из структурных компонентов (нук­леиновых кислот и белков) на мембранах цитоплазматического ретикулума клетки собираются новые вирионы. Клетка, геном которой был репрессирован (подавлен), обычно гибнет. Вновь сформировавшиеся вирионы пассивно (в результате гибели клетки) или активно (путем почкования) покидают клетку и оказываются в окружающей ее среде.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, синтез вирусных нуклеиновых кислот и белков и сборка новых вирионов происходят в определœенной последова­тельности (разобщены во времени) и в разных структурах клетки (разобщен в пространстве), в связи с чем способ репро­дукции вирусов и был назван дизъюнктивным (разобщенным). При абортивной вирусной инфекции процесс взаимодействия вируса с клеткой по тем или иным причинам прерывается до того, как произошло подавление клеточного генома. Очевидно, что в данном случае генетическая информация вируса реализова­на не будет и репродукции вируса не происходит, а клетка со­храняет свои функции неизменными.

При латентной вирусной инфекции в клетке одновременно функционируют оба генома, а при вирус-индуцированных трансформациях вирусный геном становится частью клеточно­го, функционирует и наследуется вместе с ним.

Вопрос 40. Культивирование вирусов в культурах тканей

1. Характеристики тканевых культур

2. Цитопатическое действие вирусов

1.Для культивирования вирусов используют ряд методов. Это культивирование в организме экспериментальных животных, раз­вивающихся куриных вибрионах и культурах тканей (чаще - эмбриональные ткани или опухолевые клетки). Для выращива­ния клеток тканевых культур используют многокомпонентные питательные среды (среда 199, среда Игла и др.). Οʜᴎ содержат индикатор измерения рН среды и антибиотики для подавления возможного бактериального загрязнения.

Культуры тканей бывают переживающими, в которых жиз­неспособность клеток удается сохранить лишь временно, и растущими, в которых клетки не только сохраняют жизнедея­тельность, но и активно делятся.

В роллерных культурах клетки ткани фиксированы на плотной базе (стекло) - чаще в один слой (однослойные), а в суспензированных -взвешены в жидкой среде. По количеству пассажей, выдерживаемых растущей культурой тканей, среди них различают:

‣‣‣ первичные (первично-трипсинизированные) культуры тканей, которые выдерживают не более 5-10 пассажей;

‣‣‣ полуперевиваемые культуры тканей, которые поддерживаются не более чем в 100 генерациях;

‣‣‣ перевиваемые культуры тканей, которые поддерживаются в те­чение неопределœенно длительного срока в многочисленных ге­нерациях.

Чаще всœего используются однослойные первично-перевиваемые и перевиваемые тканевые культуры.

2. О размножении вирусов в культуре ткани можно судить по ци-топатическому действию (ЦПД):

‣‣‣ деструкции клеток;

‣‣‣ изменению их морфологии;

‣‣‣ формированию многоядерных симпластов или синтиция в ре­зультате слияния клеток.

‣‣‣ в клетках культуры ткани при размножении вирусов могут об­разовываться включения - структуры, не свойственные нор­мальным клеткам.

Включения выявляются в окрашенных по Романовскому-Гимзе мазках из зараженных клеток. Οʜᴎ бывают эозинофильные и базофильные.

По локализации в клетке различают:

‣‣‣ цитоплазматические;

‣‣‣ ядерные;

‣‣‣ смешанные включения.

Характерные ядерные включения формируются в клетках, за­раженных вирусами герпеса (тельца Каудри), цитомегалии и полиомы, аденовирусами, а цитоплазматические включения - вирусами оспы (тельца Гварниери и Пашена), бешенства (тель­ца Бабеша-Негри) и др.

О размножении вирусов в культуре ткани также можно судить по методу "бляшек" (негативных колоний). При культивирова­нии вирусов в клеточном монослое под агаровым покрытием на месте пораженных клеток образуются зоны деструкции моно-сом - так называемые стерильные пятна, или бляшки. Это дает возможность не только определить число вирионов в 1 мл сре­ды (считается, что одна бляшка является потомством одного вириона), но и дифференцировать вирусы между собой по фе­номену бляшкообразования.

Следующим методом, позволяющим судить о размножении вирусов (только гемагглютинирующих) в культуре ткани, мож­но считать реакцию гемадсорбции. При культивировании виру­сов, обладающих гемагглютжирующей активностью, может происходить избыточный синтез гемагглютининов. Эти моле­кулы экспрессируются на поверхности клеток культуры ткани, и клетки культуры ткани приобретают способность адсорбиро­вать на себе эритроциты - феномен гемадсорбции. Молекулы гемагглютинина накапливаются и в среде культивирования, это приводит к тому, что культуральная жидкость (в ней нака­пливаются новые вирионы) приобретет способность вызывать гемагглютинацию.

Наиболее распространенным методом оценки размножения вирусов в культуре ткани является метод "цветной пробы". При размножении в питательной среде с индикатором незараженных

клеток культуры ткани вследствие образования кислых продук­тов метаболизма она изменяет свой цвет. При репродукции вируса нормальный метаболизм клеток нарушается, кислые продукты не образуются, среда сохраняет исходный цвет.

Вопрос 41. Механизмы противовирусной защиты макроорган изма

/. Неспецифические механизмы

2. Специфические механизмы

3. Интерфероны

1. Существование вирусов в 2 (внеклеточной и внутриклеточной) формах предопределяют и особенности иммунитета при вирус­ных инфекциях. В отношении внеклеточных вирусов действуют те же неспецифические и специфические механизмы антимик­робной резистентности, что и в отношении бактерий. Клеточная ареактивность - один из неспецифических факто­ров защиты. Она обусловлена отсутствием на клетках рецеп­торов для вирусов, что делает их невосприимчивыми к вирус­ной инфекции. К этой же группе защитных факторов можно отнести лихорадочную реакцию, выделительные механизмы (чихание, кашель и др.). В защите от внеклеточного вируса участвуют:

‣‣‣ система комплемента;

‣‣‣ пропердиновая система;

‣‣‣ NK-клетки (естественные киллеры);

‣‣‣ вирусные ингибиторы.

Фагоцитарный механизм защиты малоэффективен в отноше­нии внеклеточного вируса, но достаточно активен в отношении клеток, уже инфицированных вирусом. Экспрессия на поверхно­сти таких вирусных белков делает их объектом макрофагально-го фагоцитоза. Поскольку вирусы представляют из себяком­плекс антигенов, то при их попадании в организм развивается иммунный ответ и формируются специфические механизмы защиты - антитела и эффекторные клетки.

2. Антитела действуют только на внеклеточный вирус, препятст­вуя его взаимодействию с клетками организма и неэффектив­ны против внутриклеточного вируса. Некоторые вирусы (вирус гриппа, аденовирусы) недоступны для циркулирующих в сыворотке крови антител и способны персистировать в организме человека достаточно долго, иногда пожизненно.

При вирусных инфекциях происходит продукция антител классов IgG и IgM, а также секреторных антител класса IgA. Последние обеспечивают местный иммунитет слизистых обо­лочек на входных воротах, что при развитии вирусных инфек­ций желудочно-кишечного тракта и дыхательных путей может иметь определяющее значение. Антитела класса IgM появля­ются на 3-5-й день болезни и через несколько недель исчеза­ют, в связи с этим их наличие в сыворотке обследуемого отражает острую или свежеперенесенную инфекцию. Иммуноглобули­ны G появляются позже и сохраняются дольше, чем иммуног­лобулины М. Οʜᴎ обнаруживаются только через 1-2 недели после начала заболевания и циркулируют в крови в течение длительного времени, обеспечивая тем самым защиту от по­вторного заражения.

Еще более важную роль, чем гуморальный иммунитет, при всœех вирусных инфекциях играет клеточный иммунитет, что связано с тем, что инфицированные вирусом клетки становят­ся мишенью для цитолитического действия Т-киллеров. Кроме всœего прочего, особенностью взаимодействия вирусов с иммунной системой является способность некоторых из них (так называемые лимфотропные вирусы) поражать непосредст­венно сами клетки иммунной системы, что приводит к разви­тию иммунодефицитных состояний.

Все перечисленные" механизмы защиты (исключая фагоцитоз зараженных клеток) активны только в отношении внеклеточ­ного вируса. Попав в клетку, вирионы становятся недоступ­ными ни для антител, ни для комплемента͵ ни для иных меха­низмов защиты. Для защиты от внутриклеточного вируса в ходе эволюции клетки приобрели способность вырабатывать осо­бый белок - интерферон.

3. Интерферон - это естественный белок, обладающий противови­русной активностью в отношении внутриклеточных форм вируса. Он нарушает трансляцию и-РНК на рибосомах клеток, инфи­цированных вирусом, что ведет к прекращению синтеза вирус­ного белка. Исходя из этого универсального механизма дейст­вия интерферон подавляет репродукцию любых вирусов, т. е. не обладает специфичностью, специфичность интерферонаиная. Она носит видовой характер, т. е. человеческий интер­ферон ингибирует репродукцию вирусов в клетках человека, мышиный - мыши и т. д.

Интерферон обладает и противоопухолевым действием, что яв­ляется косвенным свидетельством роли вирусов в возникновении опухолей. Образование интерферона в клетке начинается уже через 2 ч после заражения вирусом, т. е. намного раньше, чем его репродукция, и опережает механизм антителообразования. Интерферон образуют любые клетки, но наиболее активными его продуцентами являются лейкоциты и лимфоциты. В на­стоящее время методами генной инженерии созданы бактерии (кишечные палочки), в геном которых введены гены (или их копии), ответственные за синтез интерферона в лейкоцитах. Полученный таким образом генно-инженерный интерферон широко используется для лечения и пассивной профилактики вирусных инфекций и некоторых видов опухолей. В последние годы разработан широкий круг препаратов - ин­дукторов эндогенного интерферона. Их применение предпочти­тельнее, нежели введение экзогенного интерферона. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, интерферон является одним из важных факто­ров противовирусного иммунитета͵ но в отличие от антител или клеток-эффекторов он обеспечивает не белковый, а гене­тический гомеостаз.

Вопрос 42. Вирусные инфекции и методы их диагностики

1. Вирусные инфекции человека

2. Лабораторная диагностика вирусных инфекций

1.Сегодня вирусные инфекции составляют преобладаю­щую часть инфекционной патологии человека. Самыми распро­страненными среди них остаются острые респираторные (ОРВИ) и другие вирусные инфекции, передаваемые воздушно-капель­ным путем, возбудители которых относятся к абсолютно раз­личным семействам, чаще всœего это РНК-содержащие вирусы (вирус гриппа А, В, С, вирус эпидемического паротита͵ вирусы парагриппа, кори, риновирусы и др.).

Не менее распространены и кишечные вирусные инфекцион­ные заболевания, вызываемые вирусами, также относящимися к различным семействам РНК- и ДНК-содержащих вирусов (энтеровирусы, вирус гепатита А, ротавирусы, калициновирусы и др.).

Широко распространены во всœем мире такие вирусные инфек­ционные заболевания, как вирусные гепатиты, особенно гепа­тит В, передаваемый трансмиссивным и половым путем. Их возбудители - вирусы гепатита А, В, С, D, E, G, ТТ - отно­сятся к разным таксономическим группам (пикорнавирусов, гепаднавирусов и др.), имеют разные механизмы передачи, но всœе обладают тропизмом к клеткам печени.

Одна из самых известных вирусных инфекций - ВИЧ-инфек­ция (часто называемая СПИДом - синдромом приобретенного иммунодефицита͵ который является ее неизбежным исходом). Вирус иммунодефицита человека (ВИЧ) - возбудитель ВИЧ-инфекции - относится к семейству РНК-вирусов Retroviridae, роду лентивирусов.

Большинство из них - РНК-содержащие, входят в семейства -тога-, флави-, буньявирусов и являются возбудителями энце­фалитов и геморрагических лихорадок. Возбудителями тяжелых форм геморрагических лихорадок (лихорадки Эбола, Марбург-ская лихорадка и др.) являются фило-, аденовирусы. Но транс­миссивный путь заражения при этих инфекционных заболева­ниях не является единственным. Вышеназванные инфекции в основном представляют из себяэндемичные заболевания, но тяжелые вспышки некоторых из этих заболеваний (крымской геморрагической лихорадки, лихорадки западного Нила) имели место в Ростовской и Волгоградской областях летом 1999 ᴦ.

Кроме инфекционной патологии человека, доказана роль ви­русов и в развитии некоторых опухолей животных и человека (онкогенные, или онковирусы). Среди известных вирусов, обла­дающих онкогенным действием, есть представители как ДНК-содержащих (из семейства паповавирусов, герпесвирусов, аде­новирусов, поксвирусов), так и РНК-содержащих (из семейства ретрорвирусов, род пикорновирусов) вирусов.

2. Для лабораторной диагностики вирусных инфекций используют­ся различные методы.

Вирусологическое исследование (световая микроскопия) позволяет обнаружить характерные вирусные включения, а электронная микроскопия - сами вирионы и по особенностям их строения диагностировать соответствующую инфекцию (к примеру, ро-тавирусную).

Вирусологическое исследование направлено на выделœение вируса и его идентификацию. Для выделœения вирусов используют за­ражение лабораторных животных, куриных эмбрионов или культуры тканей.

Первичную идентификацию выделœенного вируса до уровня семей­ства можно провести с помощью:

‣‣‣ определœения типа нуклеиновой кислоты (проба с бромдезоксиу-ридоном);

‣‣‣ особенностей ее строения (электронная микроскопия);

‣‣‣ размера вириона (фильтрование через мембранные фильтры с порами диаметром 50 и 100 нм);

‣‣‣ наличия суперкапсидной оболочки (проба с эфиром);

‣‣‣ гемагглютининов (реакция гемагглютинации);

‣‣‣ типа симметрии нуклеокапсида (электронная микроскопия).

Результаты оцениваются по заражению культуры ткани про­бой, подвергнутой соответствующей обработке, и с последую­щим учетом результатов заражения методом цветной пробы фильтрования. Существенное значение для идентификации вирусов (до рода, вида, внутри вида) имеет также изучение их антигенного строения, ĸᴏᴛᴏᴩᴏᴇ проводится в реакции вирусо-нейтрализации с соответствующими иммунными сыворотками. Сущность этой реакции состоит в том, что после обработки гомологичными антителами вирус утрачивает свою биологиче­скую активность (нейтрализуется) и клетка хозяина развивает­ся аналогично тому, как и неинфицированная вирусом. Об этом судят по отсутствию цитопатического действия, цветной пробе, резуль­татам реакции торможения гемагглютинации (РТГА), отсутст­вию изменений при заражении куриных эмбрионов, выживае­мости чувствительных животных.

Вирусологическое исследование - это "золотой стандарт" виру­сологии и должно проводиться в специализированной вирусо­логической лаборатории. Сегодня оно используется

практически только в условиях возникновения эпидемической вспышки того или иного вирусного инфекционного заболевания.

Для диагностики вирусных инфекций широкое применение нашли методы иммунодиагностики (серодиагностики и имму-ноиндикации). Οʜᴎ реализуются в самых разнообразных реакци­ях иммунитета :

‣‣‣ радиоизотопный иммунный анализ (РИА);

‣‣‣ иммуноферментный анализ (ИФА);

‣‣‣ реакция иммунофлюоресценции (РИФ);

‣‣‣ реакция связывания комплемента (РСК);

‣‣‣ реакция пассивной гемагглютинации (РПГА);

‣‣‣ реакции торможения гемагглютинации (РТГА) и др.

При использовании методов серодиагностики обязательным яв­ляется исследование парных сывороток. При этом 4-кратное на­растание титра антител во второй сыворотке в большинстве случаев служит показателœем протекающей или свежеперене-сенной инфекции. При исследовании одной сыворотки, взятой в острой стадии болезни, диагностическое значение имеет об­наружение антител класса IgM, свидетельствующее об острой инфекции.

Большим достижением современной вирусологии является внедрение в практику диагностики вирусных инфекций моле-кулярно-генетических методов (ДНК-зондирование, полимераз-ной цепной реакции - ПЦР). В первую очередь с их помощью выявляют персистирующие^ вирусы, находящиеся в клиниче­ском материале, с трудом обнаруживаемые или не обнаружи­ваемые другими методами.

Вопрос 43. Профилактика и лечение вирусных инфекций

1. Методы профилактики вирусных инфекций

2. Противовирусные химиотерапевтические средства

1. Лля активной искусственной профилактики вирусных инфекций . в том числе плановой, широко используются живые вирусные вак­цины. Οʜᴎ стимулируют резистентность в месте входных ворот инфекции, образование антител и клеток-эффекторов, а также синтез интерферона. Основные виды живых вирусных вакцин:

‣‣‣ гриппозная, коревая;

‣‣‣ полиомиелитная (Сейбина-Смородинцева-Чумакова);

‣‣‣ паротитная, против коревой краснухи;

‣‣‣ антирабическая, против желтой лихорадки;

‣‣‣ генно-инженерная вакцина против гепатита В - Энджерикс В. Цля профилактики вирусных инФекиий используются и убитые вакцины:

‣‣‣ против клещевого энцефалита;

‣‣‣ омской геморрагической лихорадки;

‣‣‣ полиомиелита (Солка);

‣‣‣ гепатита А (Харвикс 1440);

‣‣‣ антирабическая (ХДСВ, Пастер Мерье);

‣‣‣ а также химические - гриппозные.

Для пассивной профилактики и и ммунотерапии предложены сле­дующие антительные препараты:

‣‣‣ противогриппозный гамма-глобулин;

‣‣‣ антирабический гамма-глобулин;

‣‣‣ противокоревой гамма-глобулин для детей до 2 лет (в очагах) и для ослабленных детей старшего возраста;

‣‣‣ противогриппозная сыворотка с сульфаниламидами.

Универсальным средством пассивной профилактики вирусных инфекций являются интерферон и индукторы эндогенного ин­терферона.

2. Большинство известных химиотерапевтических препаратов не обладают противовирусной активностью, так как механизм действия большинства из них основан на подавлении микроб­ного метаболизма, а у вирусов собственные метаболические системы отсутствуют.

Антибиотики и сульфаниламиды при вирусных инфекциях ис­пользуют только с целью профилактики бактериальных ослож­нений. Тем не менее в настоящее время разрабатываются и применяются химиотерапевтические средства, обладающие противовирусной активностью.

Первая группа - аномальные нуклеозиды. По строению они близки к нуклеотидам вирусных нуклеиновых кислот, но, включенные в состав нуклеиновой кислоты, они не обеспечи­вают ее нормальное функционирование. К таким препаратам относятся азидотимидин - препарат, активный в отношении вируса иммунодефицита человека (ВИЧ-инфекция). Недостаток этих препаратов - в высокой токсичности для клеток мак­роорганизма.

Вторая группа препаратов нарушает процессы абсорбции виру­сов на клетках. Οʜᴎ менее токсичны, обладают высокой изби­рательностью и весьма перспективны. Это тиосœемикарбозон и его производные, ацикловир (зовиракс) - герпетическая ин­фекция, ремантадин и его производные - грипп А и др.

Универсальным средством терапии, так же как и профилакти­ки, вирусных инфекций является интерферон.

Вопрос 38. Нуклеиновые кислоты и белки - понятие и виды. Классификация и особенности категории "Вопрос 38. Нуклеиновые кислоты и белки" 2017, 2018.

Нуклеопротеины комплексы нуклеиновых кислот с белками. К нуклеопротеинам относятся устойчивые комплексы нуклеиновых кислот с белками, длительное время существующие в клетке в составе органелл или структурных элементов клетки в отличие от разнообразных короткоживущих промежуточных комплексов белок-нуклеиновая кислота (комплексы нуклеиновых кислот с ферментами синтетазами и гидролазами при синтезе и деградации нуклеиновых кислот, комплексы нуклеиновых кислот с регуляторными белками и т. п.). В зависимости от типа входящих в состав нуклеопротеиновых комплексов нуклеиновых кислот различают рибонуклеопротеины и дезоксирибонуклеопротеины. Нуклеопротеины составляют существенную часть рибосом, хроматина, вирусов. В рибосомах рибонуклеиновая кислота (РНК) связывается со специфическими рибосомальными белками. Вирусы являются практически чистыми рибо- и дезоксирибонуклеопротеинами. В хроматине нуклеиновая кислота представлена дезоксирибонуклеиновой кислотой, связанной с разнообразными белками, среди которых можно выделить две основные группы – гистоны и негистоновые белки.


Устойчивость нуклеопротеиновых комплексов обеспечивается нековалентным взаимодействием. У различных нуклеопротеинов в обеспечение стабильности комплекса вносят вклад различные типы взаимодействий, при этом нуклеиново-белковые взаимодействия могут быть специфичными и неспецифичными. В случае специфичного взаимодействия определённый участок белка связан со специфичной (комплементарной участку) нуклеотидной последовательностью, в этом случае вклад водородных связей, образующихся между нуклеотидными и аминокислотными остатками благодаря пространственному взаимному соответствию фрагментов, максимален. В случае неспецифичного взаимодействия основной вклад в стабильность комплекса вносит электростатическое взаимодействие отрицательно заряженных фосфатных групп полианиона нуклеиновой кислоты с положительно заряженными аминокислотными остатками белка.


Примером специфичного взаимодействия могут служить нуклеопротеидные комплексы рРНК субъединицы рибосом; неспецифичное электростатическое взаимодействие характерно для хромосомных комплексов ДНК хроматина и комплексов ДНК- протамины головок сперматозоидов некоторых животных. Нуклеопротеиновый комплекс субчастица 50S рибосом бактерий. Коричневым показана рРНК, синим белки.


Наличие отрицательно заряженного фосфата в каждом нуклеотиде делает НК полианионами. Поэтому с белками они образуют солеподобные комплексы. Схематично это можно представить так: Начальный этап упаковки ДНК осуществляют гистоны, более высокие уровни обеспечиваются другими белками. В начале молекула ДНК обвивается вокруг гистонов, образуя нуклеосомы. Сформированная таким образом нуклеосомная нить напоминает бусы, которые складываются в суперспираль (хроматиновая фибрилла) и суперсуперспираль (хромонемма интерфазы). Благодаря гистонам и другим белкам в конечном итоге размеры ДНК уменьшаются в тысячи раз: длина ДНК достигает 6-9 см (10 -1), а размеры хромосом – всего несколько микрометров (10 -6). Этапы организации хроматина


В каждом живом организме присутствуют 2 типа нуклеиновых кислот: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Молекулярная масса самой "маленькой" из известных нуклеиновых кислот - транспортной РНК (тРНК) составляет примерно 25 кД. ДНК - наиболее крупные полимерные молекулы; их молекулярная масса варьирует от до кД. ДНК и РНК состоят из мономерных единиц - нуклеотидов, поэтому нуклеиновые кислоты называют полинуклеотидами.


Каждый нуклеотид в свою очередь состоит из трех компонентов: азотистого основания, являющегося производным пурина или пиримидина, пентозы (рибозы или дезоксирибозы) и остатка фосфорной кислоты. В состав нуклеиновых кислот входят два производных пурина - аденин и гуанин и три производных пиримидина - цитозин, урацил (в РНК) и тимин (в ДНК). Пурины: аденин и гуанин входят в состав ДНК и РНК, пиримидины: цитозин и тимин - в состав ДНК, цитозин и урацил - в состав РНК.







Свойства: несут отрицательный заряд проявляют кислотные свойства Номенклатура нуклеотидов: нуклеозид-5´-монофосфат, нуклеозид-5´-дифосфат, нуклеозид-5´-трифосфат. Строение АТФ Строение ЦТФ Нуклеотид = фосфорилированный нуклеозид = нуклеозид остатка H 3 PO 4


Образование названий нуклеозидов и нуклеотидов аденозин-5`-монофосфат или адениловая кислота или АМФ аденинаденозин гуанин цитозин урацил тимин гуанозин цитидин уридин тимидин В случае дезоксирибонуклеотидов к названию основания прибавляется «дезокси» основаниенуклеозид Кирюхин Д.О.




Известны также циклические нуклеотиды, в которых фосфорная кислота образует сложноэфирные связи одновременно с 5 и 3-атомами углерода рибозного цикла. Это аденозин-3,5-циклофосфат (цАМФ) и гуанозин-3,5- циклофосфат (цГМФ). Эти два нуклеотида не входят в состав НК, но играют роль передатчиков, вторичных посредников (мессенджеров) сигналов в клетке, стимулируя переход белков из неактивного состояния в активное, или наоборот.







Первичная структура нуклеиновых кислот - это порядок чередования нуклеотидов, связанных друг с другом в линейной последовательности 3",5"- фосфодиэфирной связью. В результате образуются полимеры с фосфатным остатком на 5"-конце и свободной -ОН- группой пентозы на 3"-конце.


Первичная структура нуклеиновых кислот Х = Н для ДНК, Х = ОН для РНК Связи в молекуле нуклеиновых кислот: 1 - 5"-фосфоэфирная (или сложноэфирная); 2 - N- гликозидная; 3 - 3",5"- фосфодиэфирная. Чтение последовательности производится от 5`-конца к 3`- концу.


Для краткого изображения последовательности нуклеотидов в нуклеиновых кислотах пользуются однобуквенным кодом. При этом запись осуществляют слева направо таким образом, что первый нуклеотид имеет свободный 5"-фосфатный конец, а последний -ОН группу в положении 3" рибозы или дезоксирибозы. Так, первичная структура ДНК может быть записана следующим образом: CGTAAGTTCG... Если в изображаемом фрагменте ДНК нет Т, то перед началом записи ставится приставка д- (дезокси). Иногда полинуклеотидная цепь имеет противоположное направление, в этих случаях направление цепей обязательно указывается от 5"- к 3"- или от 3"- к 5"-концу. Первичную структуру РНК можно представить таким образом: САUUAGGUAA...




Вторичная структура ДНК представлена двойной спиралью, в которой две полинуклеотидные цепи расположены антипараллельно и удерживаются относительно друг друга за счет взаимодействия между комплементарными азотистыми основаниями. Полинуклеотидные цепи молекулы ДНК неидентичны, но комплементарны друг другу.


Все основания цепей ДНК расположены внутри двойной спирали, а пентозофосфатный остов - снаружи. Полинуклеотидные цепи удерживаются относительно друг друга за счёт водородных связей между комплементарными пуриновыми и пиримидиновыми азотистыми основаниями А и Т (две связи) и между G и С (три связи). При таком сочетании каждая пара содержит по три кольца, поэтому общий размер этих пар оснований одинаков по всей длине молекулы. Водородные связи при других сочетаниях оснований в паре возможны, но они значительно слабее. Комплементарые основания уложены в стопку в сердцевине спирали. Между основаниями двухцепочечной молекулы в стопке возникают гидрофобные взаимодействия (стекинг- взаимодействия), стабилизирующие двойную спираль.


Наибольшее перекрывание наименьшее перекрывание Комплементарные основания обращены внутрь молекулы, лежат в одной плоскости, которая практически перпендикулярна оси спирали. В результате образуется стопка оснований, между которыми возникают гидрофобные взаимодействия, обеспечивающие основной вклад в стабилизацию структуры спирали.


Существует несколько форм правозакрученной двойной спирали ДНК. В клетке ДНК чаще всего находится в В- форме, в которой на один виток спирали приходится до 10 пар нуклеотидов. В А- форме на 1 виток приходится 11 пар нуклеотидов, а в С- форме – 9,3 пар нуклеотидов. Цепи ДНК образуют 2 желоба - малую и большую борозды. Считается, что в А-форме ДНК принимает участие в процессах транскрипции, а в В- форме – в процессах репликации. Кроме правозакрученной спирали существует одна левая спираль ДНК - (Z -форма), в которой на один виток приходится 12 пар нуклеотидов.


Третичная структура ДНК формируется при ее взаимодействии с белками. Каждая молекула ДНК упакована в отдельную хромосому, в составе которой разнообразные белки связываются с отдельными участками ДНК и обеспечивают суперспирализацию и компактизацию молекулы. Общая длина ДНК гаплоидного набора из 23 хромосом человека составляет 3,5 × 10 9 пар нуклеотидов. Хромосомы образуют компактные структуры только в фаз уделения. В период покоя комплексы ДНК с белками равномерно распределены по объему ядра, образуя хроматин. Белки хроматина делят на две группы: гистоны и негистоновые белки.


Гистоны - это небольшие белки с высоким содержанием положительно заряженных аминокислот лизина и аргинина. Они взаимодействуют с отрицательно заряженными фосфатными группами ДНК длиной около 146 нуклеотидных пар, образуя нуклеосомы. Между нуклеосомами находится участок ДНК, включающий около 30 нуклеотидных пар, - линкерный участок, к которому также присоединяется молекула гистона. Негистоновые белки представлены множеством ферментов и белков, участвующих в синтезе ДНК и РНК, регуляции этих процессов, а также структурных белков, обеспечивающих компактизацию ДНК.






Вторичная структура РНК формируется в результате спирализации отдельных участков одноцепочечной РНК. В спирализованных участках или шпильках комплементарные пары азотистых оснований А и U, G и С соединяются водородными связями. Длина спирализованных участков невелика, содержит от 20 до 30 нуклеотидных пар. Эти участки чередуются с неспирализованными участками молекулы. Третичная структура РНК формируется за счет образования дополнительных водородных связей между нуклеотидами, полинуклеотидной цепью и белками, стабилизируется ионами Мg 2+ и обеспечивает дополнительную компактизацию и стабилизацию пространственной структуры молекулы.


Минорные основания входят в состав 10% от всех нуклеотидов. Обнаружено до 50 разновидностей. Встречаются в т-РНК, р-РНК и митохондриальной ДНК. Минорные основания выполняют 2 функции: они делают НК устойчивыми к действию нуклеаз и поддерживают определённую третичную структуру молекулы, так как не могут участвовать в образовании комплементарных пар, и препятствуют спирализации определённых участков в полинуклеотидной последовательности тРНК.


Типы клеточной РНК в зависимости от функций. Вид РНКРазмер в нуклеотидах Функции 1Гетерогенный ядерные РНК (гяРНК) Проматричные РНК, которые в дальнейшем превратятся в матричные РНК 2Информационные или матричные РНК (иРНК или мРНК) Являются матрицами для синтеза белков 3Транспортные РНК (тРНК) 70-90Поставляют аминокислоты в ходе синтеза белков 4Рибосомальные РНК (рРНК) Несколько классов с размерами от 100 до Являются строительными блоками рибосом 5Малые ядерные РНК (мяРНК) Участвуют в упаковке рибопротеиновых частиц, сплайсинге и т.д.


Транспортные РНК (тРНК) являются молекулами-адапторами, у которых к 3"-концу присоединяется аминокислота, а участок антикодона - к мРНК. Семейство тРНК включает более 30 различных по первичной структуре молекул, состоящих примерно из 80 нуклеотидов. Особенностью тРНК является содержание 10-20% модифицированных или минорных нуклеотидов. Вторичная структура тРНК описывается как структура клеверного листа, где наряду с 70% спирализованных участков имеются одноцепочечные фрагменты, не участвующие в образовании водородных связей между нуклеотидными остатками. К ним, в частности, относят участок, ответственный за связывание с аминокислотой на 3"-конце молекулы и антикодон - специфический триплет нуклеотидов, взаимодействующий комплементарно с кодоном мРНК. На долю тРНК приходится около 15% всей РНК клетки.




Рибосомные РНК (рРНК) составляют около 80% всей РНК клетки и входят в состав рибосом. В цитоплазматические рибосомы эукариот входит 4 типа рРНК с разной константой седиментации (КС) - скоростью оседания в ультрацентрифуге (различают рРНК - 5S, 5,8S, 28S и 18S (S - коэффициент седиментации)). рРНК образуют комплексы с белками, которые называют рибосомами. Каждая рибосома состоит из двух субъединиц - малой (40S) и большой (60S). Комплекс большой и малой субъединиц рибосомы образует компактную частицу и имеет КС 80S. Матричные РНК (мРНК), или информационные, составляют 2-4% всей РНК клетки. Они чрезвычайно разнообразны по первичной структуре, и их количество столь же велико, как и число белков в организме, так как каждая молекула мРНК является матрицей в синтезе соответствующего белка.


Отличия между РНК и ДНК: количество цепей: в РНК одна цепь, в ДНК две цепи, размеры: ДНК намного крупнее, локализация в клетке: ДНК находится в ядре, почти все РНК – вне ядра, вид моносахарида: в ДНК – дезоксирибоза, в РНК – рибоза, азотистые основания: в ДНК имеется тимин, в РНК – урацил. функция: ДНК отвечает за хранение наследственной информации, РНК – за ее реализацию.







2. Энергетическая. Макроэргические молекулы (макроэрги) биологические молекулы, которые способны накапливать и передавать энергию в ходе реакции. При гидролизе одной из связей высвобождается более 20 к Дж/моль в отличие от простой связи, энергия которой составляет около 13 к Дж/моль. Все нуклеозидтрифосфаты и нуклеозиддифосфаты (АТФ, ГДФ и их аналоги) содержат одну или две фосфоангидридные связи, энергия каждой из них составляет 32 к Дж/моль.


Наличие макроэргических связей в нуклеотидах позволяет им являться активаторами и переносчиками мономеров в клетке: УТФ - уридин трифосфорная кислота используется для синтеза гликогена, ЦТФ - цитидинтрифосфорная кислота - для синтеза липидов, ГТФ гуанозинтрифосфат - для движения рибосом в ходе трансляции (биосинтез белка) и передачи гормонального сигнала (G-белок).


3. Регуляторная. Мононуклеотиды - аллостерические эффекторы многих ключевых ферментов, цАМФ и цГМФ являются посредниками в передаче гормонального сигнала при действии многих гормонов на клетку (аденилатциклазная система), они активируют протеинкиназы. Таким образом, нуклеотиды и нуклеиновые кислоты выполняют решающие функции по поддержанию гомеостаза организма.

Белки в отличие от нуклеиновых кислот 1. участвуют в образовании плазматический мембраны 2. входят в состав хромосом 3. являются ускорителями химических реакций 4. осуществляют транспортную функцию 5. выполняют защитную функцию 6. переносят наследственную информацию из ядра к рибосомам

Ответы:

135 ! тРНК тоже выполняет транспортную функцию в биосинтезе белка. И в 6 эту функцию выполняет тРНК

Похожие вопросы

  • Найдите объем куба,если площадь его грани равна:1)16 см квадратных;2)144 дм квадратных;3)400 м квадратныхпомогите пожалуйста решить задание!спасибо.
  • задание номер 223 1. Напиши пословицы, вставляя, где необходимо, ь (пользуйся алгоритмом №3). 2. Подчеркни главные члены в третьем предложении и укажи, какими частями речи они выражены. 3. Выпиши, если есть, краткие имена прилагательные, которые не заканчиваются на шипящий. ---1. Не родись ни хорош?, ни пригож?, а родись счастлив. ---2. Не всякий в дело гож?, кто лицом пригож?. ---3. Всякий дом хозяином хорош?. Алгоритм №3 1. Посмотри, глагол ли это: а) глагол ---> ь б) нет --- тогда 2. Посмотри, не краткое ли это имя прилагательное (каков?): а) краткое имя прилагательное ----> ь(зачеркнут); б) нет - значит, это имя существительное; тогда 3. Посмотри, относится ли оно к 3-му склонению: а) да---->ь б) нет--->ь (зачеркнут) Образец применения алгоритма: (несколько) неудач? 1. Проверяем, не глогол ли это. - - Нет. 2. Тогда проверяем, не краткое ли это имя прилагательное. - - Нет. 3. Значит, это имя существительное. Проверим, не 3-го ли оно склонения (для этого поставим его в начальной форме): неудача, - - Нет, оно не 3-го склонения, значит, пишется без ь: (несколько) неудач.
  • Что подарил Герасим Татьяне
  • Помогитееее! CH2=CH2+HCl-?-CH3-CH2Cl2
  • Помогите, пожалуйста! Какую природу имеют силы, возникающие при взаимодействии тел?
  • яка маса алюмінієвого бруска якщо його розміри 4см*2,5см*0,8см
  • на одной чаше весов-6 одинаковых по массе цыплят и 3 одинаковых по массе утенка.на другой чаше весов-3 таких цыпленка и 5 таких же утят.весы в равновесии найти массу цыпленка и утенка
  • правільно склала речення з однорідними, і на грамотность єслі не сложно: 1. мені тато допомагав робити домашнє завдання, а саме: українську мову, українську літературу, хімію 2.Сьогодні в мене за планом піти в школу, на тренування, та в музей. 3.Сьогодні ввечері я малював, допомагав з прибиранням мамі, та грався з братом. 4.За ці два роки, я побував у багатьох містах України, у Одессі, Львові, Тернополі, Києві, та Чернігові, мені дуже сподобалося. 5. У сьомому з української мови, ми вивчили багато нового матеріалу: форми дієслова, доконаний і недоконаний вид дієслова, активні і пасивні дієприкметники, тощо.

1. Функции вирусных нуклеиновых кислот

2. Вирусные белки

3. Процессы взаимодействия вируса с клеткой макроорганизма

1.Функция вирусных нуклеиновых кислот независимо от их типа состоит в хранении и передаче генетической информации. Ви­русные ДНК могут быть линейными (как у эукариотов) или кольцевыми (как у прокариотов), однако в отличие от ДНК тех и других она может быть представлена однонитевой молеку­лой. Вирусные РНК имеют разную организацию (линейные, кольцевые, фрагментированные, однонитевые и двунитевые), они могут быть представлены плюс- или минус-нитями. Плюс-нити функционально тождественны и-РНК, т. е. спо­собны транслировать закодированную в них генетическую ин­формацию на рибосомы клетки хозяина.

Минус-нити не могут функционировать как и-РНК, и для трансляции содержащейся в них генетической информации необходим синтез комплементарной плюс-нити. РНК плюс-нитевых вирусов, в отличие от РНК минус-нитевых, имеют специфические образования, необходимые для узнавания рибосомами. У двунитевых как ДНК-, так и РНК-содержащих вирусов информация обычно записана только в одной цепи, чем достигается экономия генетического материала. 2. Вирусные белки по локализации в вирионе делятся:

На капсидные;

Белки суперкапсидной оболочки;

Геномные.

Белки капсидной оболочки у нуклеокапсидных вирусов вы­полняют защитную функцию - защищают вирусную нуклеино­вую кислоту от неблагоприятных воздействий - и рецептор-ную (якорную) функцию, обеспечивая адсорбцию вирусов на клетках хозяина и проникновение в них.

Белки суперкапсидной оболочки, как и белки капсидной обо­лочки, выполняют защитную и рецепторную функции. Это сложные белки - липо- и гликопротеиды. Некоторые из этих белков могут формировать морфологические субъединицы в виде шипованных отростков и обладают свойствами гемагглю-тининов (вызывают агглютинацию эритроцитов) или нейрами-нидазы (разрушают нейраминовую кислоту, входящую в состав клеточных стенок).

Отдельную группу составляют геномные белки, они ковалентно связаны с геномом и образуют с вирусной нуклеиновой кисло­той рибо- или дезоксирибонуклеопротеиды. Основная функ­ция геномных белков - участие в репликации нуклеиновой кислоты и реализации содержащейся в ней генетической ин­формации, к ним относятся РНК-зависимая РНК-полимераза и обратная транскриптаза.



В отличие от белков капсидной и суперкапсидной оболочки это не структурные, а функциональные белки. Все вирусные белки выполняют и функцию антигенов, по­скольку являются продуктами вирусного генома и, соответст­венно, чужеродными для организма хозяина. Представители царства Vira по типу нуклеиновой кислоты де­лятся на 2 подцарства - рибовирусные и дезоксирибовирусные. В подцарствах выделяют семейства, рода и виды. Принад­лежность вирусов к тому или иному семейству (всего их 19) оп­ределяется :

строением и структурой нуклеиновой кислоты;

Типом симметрии нуклеокапсида;

Наличием суперкапсидной оболочки. Принадлежность к тому или иному родуи виду связана с другими биологическими свойствами вирусов :

Размером вирионов (от 18 до 300 нм);

Способностью размножаться в культурах ткани и курином эм­брионе;

Характером изменений, происходящих в клетках под воздейст­вием вирусов;

Антигенными свойствами;

Путями передачи;

Кругом восприимчивых хозяев.

Вирусы - возбудители болезней человека относятся к 6 ДНК- содержащим семействам (поксвирусы, герпесвирусы, гепаднави-русы, аденовирусы, паповавирусы, парвовирусы) и 13 семействам РНК-содержащих вирусов (реовирусы, тогавирусы, флавирусы, коронавирусы, парамиксовирусы, ортомиксовирусы, рабдовирусы, бунъявирусы, аренавирусы, ретровирусы, пикорнавиру-сы, калицивирусы, филовирусы).

3. Взаимодействие вируса с клеткой - это сложный процесс, ре­зультаты которого могут быть различны. По этому признаку (конечный результат) можно выделить 4 типа взаимодействия вирусов и клеток:

%/ продуктивная вирусная инфекция - это такой тип взаимодейст­вия вируса с клеткой, при котором происходит репродукция ви­русов, а клетка погибает (для бактериофагов такой тип взаи­модействия с клеткой называют литическим). Продуктивная вирусная инфекция лежит в основе острых вирусных заболева­ний, а также в основе условных латентных инфекций, при ко­торых погибают не все клетки пораженного органа, а только часть, а остальные неповрежденные клетки этого органа ком­пенсируют его функции, вследствие чего заболевание некото­рое время не проявляется, пока не наступит декомпенсация;

абортивная вирусная инфекция - это такой тип взаимодействия вируса с клеткой, при котором репродукция вирусов не происхо­дит, а клетка избавляется от вируса, функции ее при этом не нарушаются, поскольку это происходит только в процессе ре­продукции вируса;

латентная вирусная инфекция - это такой тип взаимодействия вируса с клеткой, при котором происходит репродукция и виру­сов, и клеточных компонентов, но клетка не погибает; при этом клеточные синтезы преобладают, и поэтому клетка достаточно длительно сохраняет свои функции - этот механизм лежит в основе безусловных латентных вирусных инфекций;

вирус-индуцированные трансформации - это такой тип взаимо­действия вируса с клеткой, при котором клетки, пораженные вирусом, приобретают новые, ранее не присущие им свойства. Геном вируса или его часть встраивается в геном клетки, и ви­русные гены превращаются в группу клеточных генов. Этот интегрированный в хромосому клетки-хозяина вирусный ге­ном называется провирусом, а такое состояние клеток обозна­чается как вирогения.

При любом из указанных типов взаимодействия вирусов и клеток можно выделить процессы, направленные на то, чтобы доставить вирусную нуклеиновую кислоту в клетку, обеспечить условия и механизмы ее репликации и реализации содержа­щейся в ней генетической информации.

Вопрос 39. Особенности репродукции вирусов

1. Периоды осуществления продуктивной вирусной инфекции

2. Репликация вируса

3. Трансляция

1.Продуктивная вирусная инфекция осуществляется в 3 периода :

начальный период включает стадии адсорбции вируса на клетке, проникновения в клетку, дезинтеграции (депротеинизации) или "раздевания" вируса. Вирусная нуклеиновая кислота была доставлена в соответствующие клеточные структуры и под дей­ствием лизосомальных ферментов клетки освобождается от защитных белковых оболочек. В итоге формируется уникаль­ная биологическая структура: инфицированная клетка содер­жит 2 генома (собственный и вирусный) и 1 синтетический аппарат (клеточный);

После этого начинается вторая группа процессов репродукции вируса, включающая средний и заключительный периоды, во время которых происходят репрессия клеточного и экспрессия вирусного генома. Репрессию клеточного генома обеспечивают низкомолекулярные регуляторные белки типа гистонов, синтезируемые в любой клетке. При вирусной инфекции этот про­цесс усиливается, теперь клетка представляет собой структуру, в которой генетический аппарат представлен вирусным геномом, а синтетический аппарат - синтетическими системами клетки.

2. Дальнейшее течение событий в клетке направлено на репликацию вирусной нуклеиновой кислоты (синтез генетического материала для новых вирионов) и реализацию содержащейся в ней генети­ческой информации (синтез белковых компонентов для новых вирионов). У ДНК-содержащих вирусов, как в прокариотиче-ских, так и в эукариотических клетках, репликация вирусной ДНК происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. При этом у однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить - так назы­ваемая репликативная форма, которая служит матрицей для дочерних молекул ДНК.

3. Реализация генетической информации вируса, содержащейся в ДНК, происходит следующим образом: при участии ДНК-зави­симой РНК-полимеразы синтезируются и-РНК, которые по­ступают на рибосомы клетки, где и синтезируются вирусспе-цифические белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина, это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.

У РНК-содержащих вирусов процессы репликации их генома, транскрипции и трансляции генетической информации осуще­ствляются иными путями. Репликация вирусных РНК, как минус-, так и плюс-нитей, осуществляется через репликативную форму РНК (комплементарную исходной), синтез которой обеспечивает РНК-зависимая РНК-полимераза - это геном­ный белок, который есть у всех РНК-содержащих вирусов. Ре­пликативная форма РНК минус-нитевых вирусов (плюс-нить) служит не только матрицей для синтеза дочерних молекул ви­русной РНК (минус-нитей), но и выполняет функции и-РНК, т. е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляцию).

У плюс-нитевых РНК-содержащих вирусов функцию трансля­ции выполняют ее копии, синтез которых осуществляется че­рез репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.

У некоторых РНК-содержащих вирусов (реовирусы) имеется со­вершенно уникальный механизм транскрипции. Он обеспечива­ется специфическим вирусным ферментом - ревертазой (обрат­ной транскриптазой) и называется обратной транскрипцией. Суть ее состоит в том, что вначале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется,вторая нить и формируется двунитевой ДНК-транскрипт. С не­го обычным путем через образование и-РНК происходит реа­лизация информации вирусного генома.

Результатом описанных процессов репликации, транскрипции и трансляции является образование дочерних молекул вирусной нуклеиновой кислоты и вирусных белков, закодированных в геноме вируса.

После этого наступает третий, заключительный период взаимо­действия вируса и клетки. Из структурных компонентов (нук­леиновых кислот и белков) на мембранах цитоплазматического ретикулума клетки собираются новые вирионы. Клетка, геном которой был репрессирован (подавлен), обычно гибнет. Вновь сформировавшиеся вирионы пассивно (в результате гибели клетки) или активно (путем почкования) покидают клетку и оказываются в окружающей ее среде.

Таким образом, синтез вирусных нуклеиновых кислот и белков и сборка новых вирионов происходят в определенной последова­тельности (разобщены во времени) и в разных структурах клетки (разобщен в пространстве), в связи с чем способ репро­дукции вирусов и был назван дизъюнктивным (разобщенным). При абортивной вирусной инфекции процесс взаимодействия вируса с клеткой по тем или иным причинам прерывается до того, как произошло подавление клеточного генома. Очевидно, что в этом случае генетическая информация вируса реализова­на не будет и репродукции вируса не происходит, а клетка со­храняет свои функции неизменными.

При латентной вирусной инфекции в клетке одновременно функционируют оба генома, а при вирус-индуцированных трансформациях вирусный геном становится частью клеточно­го, функционирует и наследуется вместе с ним.

Вопрос 40. Культивирование вирусов в культурах тканей

1. Характеристики тканевых культур

2. Цитопатическое действие вирусов

1.Для культивирования вирусов используют ряд методов. Это культивирование в организме экспериментальных животных, раз­вивающихся куриных вибрионах и культурах тканей (чаще - эмбриональные ткани или опухолевые клетки). Для выращива­ния клеток тканевых культур используют многокомпонентные питательные среды (среда 199, среда Игла и др.). Они содержат индикатор измерения рН среды и антибиотики для подавления возможного бактериального загрязнения.

Культуры тканей могут быть переживающими, в которых жиз­неспособность клеток удается сохранить лишь временно, и растущими, в которых клетки не только сохраняют жизнедея­тельность, но и активно делятся.

В роллерных культурах клетки ткани фиксированы на плотной основе (стекло) - чаще в один слой (однослойные), а в суспензированных -взвешены в жидкой среде. По количеству пассажей, выдерживаемых растущей культурой тканей, среди них различают:

первичные (первично-трипсинизированные) культуры тканей, которые выдерживают не более 5-10 пассажей;

полуперевиваемые культуры тканей, которые поддерживаются не более чем в 100 генерациях;

перевиваемые культуры тканей, которые поддерживаются в те­чение неопределенно длительного срока в многочисленных ге­нерациях.

Чаще всего используются однослойные первично-перевиваемые и перевиваемые тканевые культуры.

2. О размножении вирусов в культуре ткани можно судить по ци-топатическому действию (ЦПД):

Деструкции клеток;

Изменению их морфологии;

Формированию многоядерных симпластов или синтиция в ре­зультате слияния клеток.

В клетках культуры ткани при размножении вирусов могут об­разовываться включения - структуры, не свойственные нор­мальным клеткам.

Включения выявляются в окрашенных по Романовскому-Гимзе мазках из зараженных клеток. Они бывают эозинофильные и базофильные.

По локализации в клетке различают:

Цитоплазматические;

Ядерные;

Смешанные включения.

Характерные ядерные включения формируются в клетках, за­раженных вирусами герпеса (тельца Каудри), цитомегалии и полиомы, аденовирусами, а цитоплазматические включения - вирусами оспы (тельца Гварниери и Пашена), бешенства (тель­ца Бабеша-Негри) и др.

О размножении вирусов в культуре ткани также можно судить по методу "бляшек" (негативных колоний). При культивирова­нии вирусов в клеточном монослое под агаровым покрытием на месте пораженных клеток образуются зоны деструкции моно-сом - так называемые стерильные пятна, или бляшки. Это дает возможность не только определить число вирионов в 1 мл сре­ды (считается, что одна бляшка является потомством одного вириона), но и дифференцировать вирусы между собой по фе­номену бляшкообразования.

Следующим методом, позволяющим судить о размножении вирусов (только гемагглютинирующих) в культуре ткани, мож­но считать реакцию гемадсорбции. При культивировании виру­сов, обладающих гемагглютжирующей активностью, может происходить избыточный синтез гемагглютининов. Эти моле­кулы экспрессируются на поверхности клеток культуры ткани, и клетки культуры ткани приобретают способность адсорбиро­вать на себе эритроциты - феномен гемадсорбции. Молекулы гемагглютинина накапливаются и в среде культивирования, это приводит к тому, что культуральная жидкость (в ней нака­пливаются новые вирионы) приобретет способность вызывать гемагглютинацию.

Наиболее распространенным методом оценки размножения вирусов в культуре ткани является метод "цветной пробы". При размножении в питательной среде с индикатором незараженных

клеток культуры ткани вследствие образования кислых продук­тов метаболизма она изменяет свой цвет. При репродукции вируса нормальный метаболизм клеток нарушается, кислые продукты не образуются, среда сохраняет исходный цвет.

Вопрос 41. Механизмы противовирусной защиты макроорган изма

/. Неспецифические механизмы

2. Специфические механизмы

3. Интерфероны

1. Существование вирусов в 2 (внеклеточной и внутриклеточной) формах предопределяют и особенности иммунитета при вирус­ных инфекциях. В отношении внеклеточных вирусов действуют те же неспецифические и специфические механизмы антимик­робной резистентности, что и в отношении бактерий. Клеточная ареактивность - один из неспецифических факто­ров защиты. Она обусловлена отсутствием на клетках рецеп­торов для вирусов, что делает их невосприимчивыми к вирус­ной инфекции. К этой же группе защитных факторов можно отнести лихорадочную реакцию, выделительные механизмы (чихание, кашель и др.). В защите от внеклеточного вируса участвуют:

Система комплемента;

Пропердиновая система;

NK-клетки (естественные киллеры);

Вирусные ингибиторы.

Фагоцитарный механизм защиты малоэффективен в отноше­нии внеклеточного вируса, но достаточно активен в отношении клеток, уже инфицированных вирусом. Экспрессия на поверхно­сти таких вирусных белков делает их объектом макрофагально-го фагоцитоза. Поскольку вирусы представляют собой ком­плекс антигенов, то при их попадании в организм развивается иммунный ответ и формируются специфические механизмы защиты - антитела и эффекторные клетки.

2. Антитела действуют только на внеклеточный вирус, препятст­вуя его взаимодействию с клетками организма и неэффектив­ны против внутриклеточного вируса. Некоторые вирусы (вирус гриппа, аденовирусы) недоступны для циркулирующих в сыворотке крови антител и способны персистировать в организме человека достаточно долго, иногда пожизненно.

При вирусных инфекциях происходит продукция антител классов IgG и IgM, а также секреторных антител класса IgA. Последние обеспечивают местный иммунитет слизистых обо­лочек на входных воротах, что при развитии вирусных инфек­ций желудочно-кишечного тракта и дыхательных путей может иметь определяющее значение. Антитела класса IgM появля­ются на 3-5-й день болезни и через несколько недель исчеза­ют, поэтому их наличие в сыворотке обследуемого отражает острую или свежеперенесенную инфекцию. Иммуноглобули­ны G появляются позже и сохраняются дольше, чем иммуног­лобулины М. Они обнаруживаются только через 1-2 недели после начала заболевания и циркулируют в крови в течение длительного времени, обеспечивая тем самым защиту от по­вторного заражения.

Еще более важную роль, чем гуморальный иммунитет, при всех вирусных инфекциях играет клеточный иммунитет, что связано с тем, что инфицированные вирусом клетки становят­ся мишенью для цитолитического действия Т-киллеров. Кроме всего прочего, особенностью взаимодействия вирусов с иммунной системой является способность некоторых из них (так называемые лимфотропные вирусы) поражать непосредст­венно сами клетки иммунной системы, что приводит к разви­тию иммунодефицитных состояний.

Все перечисленные" механизмы защиты (исключая фагоцитоз зараженных клеток) активны только в отношении внеклеточ­ного вируса. Попав в клетку, вирионы становятся недоступ­ными ни для антител, ни для комплемента, ни для иных меха­низмов защиты. Для защиты от внутриклеточного вируса в ходе эволюции клетки приобрели способность вырабатывать осо­бый белок - интерферон.

3. Интерферон - это естественный белок, обладающий противови­русной активностью в отношении внутриклеточных форм вируса. Он нарушает трансляцию и-РНК на рибосомах клеток, инфи­цированных вирусом, что ведет к прекращению синтеза вирус­ного белка. Исходя из этого универсального механизма дейст­вия интерферон подавляет репродукцию любых вирусов, т. е. не обладает специфичностью, специфичность интерферонаиная. Она носит видовой характер, т. е. человеческий интер­ферон ингибирует репродукцию вирусов в клетках человека, мышиный - мыши и т. д.

Интерферон обладает и противоопухолевым действием, что яв­ляется косвенным свидетельством роли вирусов в возникновении опухолей. Образование интерферона в клетке начинается уже через 2 ч после заражения вирусом, т. е. намного раньше, чем его репродукция, и опережает механизм антителообразования. Интерферон образуют любые клетки, но наиболее активными его продуцентами являются лейкоциты и лимфоциты. В на­стоящее время методами генной инженерии созданы бактерии (кишечные палочки), в геном которых введены гены (или их копии), ответственные за синтез интерферона в лейкоцитах. Полученный таким образом генно-инженерный интерферон широко используется для лечения и пассивной профилактики вирусных инфекций и некоторых видов опухолей. В последние годы разработан широкий круг препаратов - ин­дукторов эндогенного интерферона. Их применение предпочти­тельнее, нежели введение экзогенного интерферона. Таким образом, интерферон является одним из важных факто­ров противовирусного иммунитета, но в отличие от антител или клеток-эффекторов он обеспечивает не белковый, а гене­тический гомеостаз.

Вопрос 42. Вирусные инфекции и методы их диагностики

1. Вирусные инфекции человека

2. Лабораторная диагностика вирусных инфекций

1.В настоящее время вирусные инфекции составляют преобладаю­щую часть инфекционной патологии человека. Самыми распро­страненными среди них остаются острые респираторные (ОРВИ) и другие вирусные инфекции, передаваемые воздушно-капель­ным путем, возбудители которых относятся к абсолютно раз­личным семействам, чаще всего это РНК-содержащие вирусы (вирус гриппа А, В, С, вирус эпидемического паротита, вирусы парагриппа, кори, риновирусы и др.).

Не менее распространены и кишечные вирусные инфекцион­ные заболевания, вызываемые вирусами, также относящимися к различным семействам РНК- и ДНК-содержащих вирусов (энтеровирусы, вирус гепатита А, ротавирусы, калициновирусы и др.).

Широко распространены во всем мире такие вирусные инфек­ционные заболевания, как вирусные гепатиты, особенно гепа­тит В, передаваемый трансмиссивным и половым путем. Их возбудители - вирусы гепатита А, В, С, D, E, G, ТТ - отно­сятся к разным таксономическим группам (пикорнавирусов, гепаднавирусов и др.), имеют разные механизмы передачи, но все обладают тропизмом к клеткам печени.

Одна из самых известных вирусных инфекций - ВИЧ-инфек­ция (часто называемая СПИДом - синдромом приобретенного иммунодефицита, который является ее неизбежным исходом). Вирус иммунодефицита человека (ВИЧ) - возбудитель ВИЧ-инфекции - относится к семейству РНК-вирусов Retroviridae, роду лентивирусов.

Большинство из них - РНК-содержащие, входят в семейства -тога-, флави-, буньявирусов и являются возбудителями энце­фалитов и геморрагических лихорадок. Возбудителями тяжелых форм геморрагических лихорадок (лихорадки Эбола, Марбург-ская лихорадка и др.) являются фило-, аденовирусы. Но транс­миссивный путь заражения при этих инфекционных заболева­ниях не является единственным. Вышеназванные инфекции в основном представляют собой эндемичные заболевания, но тяжелые вспышки некоторых из этих заболеваний (крымской геморрагической лихорадки, лихорадки западного Нила) имели место в Ростовской и Волгоградской областях летом 1999 г.

Кроме инфекционной патологии человека, доказана роль ви­русов и в развитии некоторых опухолей животных и человека (онкогенные, или онковирусы). Среди известных вирусов, обла­дающих онкогенным действием, есть представители как ДНК-содержащих (из семейства паповавирусов, герпесвирусов, аде­новирусов, поксвирусов), так и РНК-содержащих (из семейства ретрорвирусов, род пикорновирусов) вирусов.

2. Для лабораторной диагностики вирусных инфекций используют­ся различные методы.

Вирусологическое исследование (световая микроскопия) позволяет обнаружить характерные вирусные включения, а электронная микроскопия - сами вирионы и по особенностям их строения диагностировать соответствующую инфекцию (например, ро-тавирусную).

Вирусологическое исследование направлено на выделение вируса и его идентификацию. Для выделения вирусов используют за­ражение лабораторных животных, куриных эмбрионов или культуры тканей.

Первичную идентификацию выделенного вируса до уровня семей­ства можно провести с помощью:

Определения типа нуклеиновой кислоты (проба с бромдезоксиу-ридоном);

Особенностей ее строения (электронная микроскопия);

Размера вириона (фильтрование через мембранные фильтры с порами диаметром 50 и 100 нм);

Наличия суперкапсидной оболочки (проба с эфиром);

Гемагглютининов (реакция гемагглютинации);

Типа симметрии нуклеокапсида (электронная микроскопия).

Результаты оцениваются по заражению культуры ткани про­бой, подвергнутой соответствующей обработке, и с последую­щим учетом результатов заражения методом цветной пробы фильтрования. Существенное значение для идентификации вирусов (до рода, вида, внутри вида) имеет также изучение их антигенного строения, которое проводится в реакции вирусо-нейтрализации с соответствующими иммунными сыворотками. Сущность этой реакции состоит в том, что после обработки гомологичными антителами вирус утрачивает свою биологиче­скую активность (нейтрализуется) и клетка хозяина развивает­ся так же, как и неинфицированная вирусом. Об этом судят по отсутствию цитопатического действия, цветной пробе, резуль­татам реакции торможения гемагглютинации (РТГА), отсутст­вию изменений при заражении куриных эмбрионов, выживае­мости чувствительных животных.

Вирусологическое исследование - это "золотой стандарт" виру­сологии и должно проводиться в специализированной вирусо­логической лаборатории. В настоящее время оно используется

практически только в условиях возникновения эпидемической вспышки того или иного вирусного инфекционного заболевания.

Для диагностики вирусных инфекций широкое применение нашли методы иммунодиагностики (серодиагностики и имму-ноиндикации). Они реализуются в самых разнообразных реакци­ях иммунитета :

Радиоизотопный иммунный анализ (РИА);

Иммуноферментный анализ (ИФА);

Реакция иммунофлюоресценции (РИФ);

Реакция связывания комплемента (РСК);

Реакция пассивной гемагглютинации (РПГА);

Реакции торможения гемагглютинации (РТГА) и др.

При использовании методов серодиагностики обязательным яв­ляется исследование парных сывороток. При этом 4-кратное на­растание титра антител во второй сыворотке в большинстве случаев служит показателем протекающей или свежеперене-сенной инфекции. При исследовании одной сыворотки, взятой в острой стадии болезни, диагностическое значение имеет об­наружение антител класса IgM, свидетельствующее об острой инфекции.

Большим достижением современной вирусологии является внедрение в практику диагностики вирусных инфекций моле-кулярно-генетических методов (ДНК-зондирование, полимераз-ной цепной реакции - ПЦР). В первую очередь с их помощью выявляют персистирующие^ вирусы, находящиеся в клиниче­ском материале, с трудом обнаруживаемые или не обнаружи­ваемые другими методами.

Вопрос 43. Профилактика и лечение вирусных инфекций

1. Методы профилактики вирусных инфекций

2. Противовирусные химиотерапевтические средства

1. Лля активной искусственной профилактики вирусных инфекций . в том числе плановой, широко используются живые вирусные вак­цины. Они стимулируют резистентность в месте входных ворот инфекции, образование антител и клеток-эффекторов, а также синтез интерферона. Основные виды живых вирусных вакцин:

Гриппозная, коревая;

Полиомиелитная (Сейбина-Смородинцева-Чумакова);

Паротитная, против коревой краснухи;

Антирабическая, против желтой лихорадки;

Генно-инженерная вакцина против гепатита В - Энджерикс В. Цля профилактики вирусных инФекиий используются и убитые вакцины:

Против клещевого энцефалита;

Омской геморрагической лихорадки;

Полиомиелита (Солка);

Гепатита А (Харвикс 1440);

Антирабическая (ХДСВ, Пастер Мерье);

А также химические - гриппозные.

Для пассивной профилактики и и ммунотерапии предложены сле­дующие антительные препараты:

Противогриппозный гамма-глобулин;

Антирабический гамма-глобулин;

Противокоревой гамма-глобулин для детей до 2 лет (в очагах) и для ослабленных детей старшего возраста;

Противогриппозная сыворотка с сульфаниламидами.

Универсальным средством пассивной профилактики вирусных инфекций являются интерферон и индукторы эндогенного ин­терферона.

2. Большинство известных химиотерапевтических препаратов не обладают противовирусной активностью, так как механизм действия большинства из них основан на подавлении микроб­ного метаболизма, а у вирусов собственные метаболические системы отсутствуют.

Антибиотики и сульфаниламиды при вирусных инфекциях ис­пользуют только с целью профилактики бактериальных ослож­нений. Тем не менее в настоящее время разрабатываются и применяются химиотерапевтические средства, обладающие противовирусной активностью.

Первая группа - аномальные нуклеозиды. По строению они близки к нуклеотидам вирусных нуклеиновых кислот, но, включенные в состав нуклеиновой кислоты, они не обеспечи­вают ее нормальное функционирование. К таким препаратам относятся азидотимидин - препарат, активный в отношении вируса иммунодефицита человека (ВИЧ-инфекция). Недостаток этих препаратов - в высокой токсичности для клеток мак­роорганизма.

Вторая группа препаратов нарушает процессы абсорбции виру­сов на клетках. Они менее токсичны, обладают высокой изби­рательностью и весьма перспективны. Это тиосемикарбозон и его производные, ацикловир (зовиракс) - герпетическая ин­фекция, ремантадин и его производные - грипп А и др.

Универсальным средством терапии, так же как и профилакти­ки, вирусных инфекций является интерферон.

Вопрос 44. Бактериофаги

1. Понятие о бактериофагах

2. Классификация бактериофагов

3. Диагностическая и терапевтическая роль фагов

1. Бактериофаги (фаги) - это вирусы, поражающие бактериальные клетки (в качестве клетки-хозяина). Вирионы фагов состоят из головки, содержащей нуклеиновую кислоту вируса, и более или менее выраженного отростка. Нуклеокапсид головки фага имеет кубический тип симметрии, а отросток - спиральный тип, т. е. бактериофаги имеют смешанный тип симметрии нук-леокапсида.

Большинство фагов содержат кольцевую двунитчатую ДНК, и лишь некоторые - РНК или однонитчатую ДНК. Фаги, как и другие вирусы, обладают антигенными свойствами и содержат группоспецифические (по ним делятся на серотипы) и типо-специфические антигены. Сыворотки, содержащие антитела к этим антигенам (антифаговые сыворотки), нейтрализуют лити-ческую активность фагов. Взаимодействие бактериофага с клеткой происходит в соответствии с основными типами взаи­модействия, характерными для всех вирусов, - продуктивная (литическая), абортивная вирусная и латентная (лизогения, вирогения) инфекция, а также вирус-индуцированная транс­формация.

По характеру взаимодействия фага с клеткой все бактериофа­ги делятся:

На вирулентные (литические), вызывающие продуктивную ин­фекцию и лизис бактериальной клетки;

умеренные, вызывающие латентную инфекцию и ассоциацию генома вируса с бактериальной хромосомой. Умеренные фаги, в отличие от вирулентности, не вызывают ги­бели бактериальных клеток и при взаимодействии с ней пере­ходят в неинфекционную форму фага, называемую профагом. Профаг - геном фага, ассоциированный с бактериальной хромо­сомой. Профаг, ставший частью хромосомы клетки, при ее размножении реплицируется синхронно с геномом бактерии, не вызывая ее лизиса, и передается по наследству от клетки к клетке в неограниченном числе поколений. Бактериальные клетки, содержащие в своей хромосоме профаг, называются лизогенными. Профаг в лизогенных бактериях са­мопроизвольно или под влиянием различных индуцированных агентов может переходить в вегетативный фаг. В результате та­кого превращения бактериальная клетка лизируется и продуци­рует новые фаговые частицы. В ходе лизогенизации бактериаль­ные клетки могут дополнительно приобретать новые признаки, детерминируемые геномом вируса. Такое явление - изменение свойств микроорганизмов под влиянием профага - называется фаговой, или лизогенной, конверсией (проявление вирус-инду-цироанной трансформации).

Умеренные фаги, неспособные ни при каких условиях перехо­дить из профага в вегетативный фаг (образовывать зрелые фа­говые частицы), называются дефектными, чаще это происходит в результате нарушения стадии сборки вирусных частиц. Неко­торые умеренные фаги называются трансдуцирующими, по­скольку с их помощью осуществляется один из механизмов ге­нетической рекомбинации у бактерий - трансдукции. Такие фаги могут использоваться, в частности, в генной инженерии в качестве векторов для получения рекомбинантных ДНК и/или приготовлении рекомбинантных (генно-инженерных) вакцин.

2. Специфичность фагов послужила основанием для их наименова­ния по видовым и родовым названиям чувствительных к ним бак­терий. Так, например, фаги, лизирующие стрептококки, назы­ваются стрептококковыми, лизирующие холерные вибрионы -холерные, стафилококки - стафилококковыми. По признаку специфичности выделяют поливалентные бакте­риофаги, лизирующие культуры одного семейства или рода бактерий, моновалентные (монофаги) - лизирующие культуры только одного вида бактерий, а также отличающиеся наиболее высокой специфичностью - типовые бактериофаги, способные вызывать лизис только определенных типов (вариантов) бакте­риальной культуры внутри вида бактерий.

Наборы таких типоспецифических фагов используются для дифференцировки бактерий внутри вида - это метод фаготи-пирования бактерий. С помощью этого метода можно устано­вить источник и пути передачи инфекционного заболевания, т. е. провести его эпидемиологический анализ, поскольку он позволяет сравнивать фаготипы (фаговары) чистых культур бактерий, выделенных в ходе бактериологического исследова­ния от больного и от окружающих его лиц - возможных бак­терионосителей.

Лучшие статьи по теме