Для школьников и родителей
  • Главная
  • Проекты
  • Закон нормального распределения в социологии. Нормальное распределение и его параметры Нормальное распределение в психологии

Закон нормального распределения в социологии. Нормальное распределение и его параметры Нормальное распределение в психологии


Полученные в исследовании эмпирические данные подлежат проверке на распределение их в выборках по отношению к средней (арифметической, медиане или моде).

Распределением признака называется закономерность встречаемости разных его значений . В психологических исследованиях чаще всего ссылаются на нормальное распределение.

Одним из важнейших в математической статистике является понятие нормального распределения. Нормальное распределение – модель варьирования некоторой случайной величины, значения которой определяются множеством одновременно действующих независимых факторов. Число таких факторов велико, а эффект влияния каждого из них в отдельности очень мал. Такой характер взаимовлияний весьма характерен для психических явлений, поэтому исследователь в области психологии чаще всего выявляет нормальное распределение. Однако так бывает не всегда, поэтому в каждом случае форма распределения должна быть проверена. Характер распределения выявляется главным образом с целью определиться в методах математико-статистической обработки данных.

Нормальное распределение характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величине - достаточно часто. Нормальным такое распределение называется потому, что оно очень часто встречалось в естественно-научных исследованиях и казалось «нормой» всякого массового случайного проявления признаков. График нормального распределения представляет собой привычную глазу психолога-исследователя так называемую колоколообразную кривую (рис. А).

Рис. А. Кривая нормального распределения

Параметры распределения – это его числовые характеристики, указывающие, где «в среднем» располагаются значения признака, насколько эти значения изменчивы и наблюдается ли преимущественное появление определенных значений признака . Наиболее практически важными параметрами являются математическое ожидание, дисперсия, показатели асимметрии и эксцесса.

В реальных психологических исследованиях мы оперируем не параметрами, а их приближенными значениями, так называемыми оценками параметров. Это объясняется ограниченностью обследованных выборок. Чем больше выборка, тем ближе может быть оценка параметра к его истинному значению. В дальнейшем, говоря о параметрах, мы будем иметь в виду их оценки.

Для определения способов математико-статистической обработки прежде всего необходимо оценить характер распределения данных по всем используемым параметрам (признакам). Для параметров (признаков), имеющих нормальное распределение или близкое к нормальному, можно использовать методы параметрической статистики, которые во многих случаях являются более мощными, чем методы непараметрической статистики. Достоинством последних является то, что они позволяют проверять статистические гипотезы независимо от формы распределения.

Если характер распределения показателей психологического признака является нормальным или близким к нормальной форме распределения признака, описываемой кривой Гаусса, то мы можем использовать параметрические методы математической статистики как наиболее простые, надежные и достоверные: сравнительный анализ, расчет достоверности отличий признака между выборками по f-критерию Стьюдента, F-критерию Фишера, коэффициент корреляции Пирсона и др.

Если кривая распределения показателей психологического признака далека от нормальной, то мы вынуждены будем использовать методы непараметрической статистики: расчет достоверности отличий по критерию Q Розенбаума (для малых выборок), по критерию U Манна – Уитни, коэффициент ранговой корреляции Спирмена, факторный, многофакторный, кластерный и другие методы анализа.

Помимо этого, по характеру распределения можно составить общее представление об общей характеристике выборки испытуемых по данному признаку и тому, насколько данная методика соответствует (т. е. «работает», валидна) данной выборке.

Для нормального распределения характерно следующее:

а) все три средние совпадают;

б) кривая распределения частот и значений совершенно симметрична по отношению к средней, т. е. слева и справа от нее лежит 50% вариантов; в интервале от М -lo до М +1о находится 68,26% всех вариантов; в интервале от М -2о до М +2о лежит 95,44% вариантов.

В психологии существует ряд шкал, основанных на нормальном распределении и имеющих разные значения М и σ. Распределения различных измеренных в эксперименте признаков имеют разные величины М и σ. Переводя полученные первичные оценки разных признаков к распределению с одними и теми же М и σ, мы получаем больше возможностей для оценки и сопоставления их варьирования. Сделать это нам позволяет использование нормированного отклонения . Нормированное отклонение показывает, на сколько сигм отклоняется та или иная варианта от среднего уровня варьирующего признака (средней арифметической) , и выражается формулой:

где Хi

М

σ – стандартное отклонение.

С помощью нормированного отклонения можно оценить любое полученное значение по отношению к группе в целом, взвесить его отклонение и одновременно освободиться от именованных величин. Для того чтобы избавиться от отрицательных чисел, к полученной величине t обычно прибавляют какую-либо константу.

С учетом этих соображений весьма удобна шкала Г-баллов. Для этой шкалы принято нормальное распределение, имеющее М = 0, σ = 10.

Рис. Б. Расчет нормального распространения по шкале Г-баллов

Для пересчета берется константа, равная 50. Формула преобразования сырых оценок в Г-баллы следующая:

где Хi – значение признака (в «сырых» баллах);

М – средняя арифметическая признака;

σ – стандартное отклонение.

Для облегчения и алгоритмизации практической работы психолога существуют специальные таблицы перевода «сырых» баллов, например, базовых шкал теста СМИЛ (адаптированный вариант теста MMPI, разработан Л. Н. Собчик), теста МЛО «Адаптивность» в стандартные Г-баллы.

Наиболее широкое распространение получил способ приведения нормированных оценок к виду, удобному для практического применения, предложенный Р. Б. Кэттеллом (1970, 1973), который представляет перевод исходных тестовых оценок в 10-балльную равноинтервальную шкалу. Это достигается путем разбиения оси тестовых оценок на 10 интервалов, соответствующих долям стандартного отклонения.

Рис. В. Нормальное распространение для равноинтервальных шкал

При этом среднее арифметическое по группе принимается за среднюю точку и ей присваивается значение, равное 5,5 балла по стандартной 10-балльной шкале. Всякая оценка в интервале (М + 0,25 σ) переводятся в 6 баллов, а оценка в (М – 0,25 σ) дает стандартный балл, равный 5,0. Любое дальнейшее увеличение или уменьшение тестовой оценки на 0,5 σ увеличивает или уменьшает стандартную оценку на 1 балл.

Таким образом, для создания стеновой шкалы и вычисления ее пограничных значений «сырых» баллов можно использовать следующую таблицу (при условии нормального распределения признака или близкого к нормальному).

1 стен = М – 2,25 σ

2 стен = М – 1,75 σ

3 стен = М – 1,25 σ

4 стен = М – 0,75 σ

5 стен = М – 0,25 σ

6 стен = М + 0,25 σ

7 стен = М + 0,75 σ

8 стен = М + 1,25 σ

9 стен = М + 1,75 σ 10 стен = М + 2,25 σ

Перевод отдельных «сырых» баллов в стены может выполняться и без создания стеновой шкалы, а непосредственно по общей формуле:

где Хi – значение признака (в «сырых» баллах);

М – средняя арифметическая признака;

А – заданное стандартное отклонение;

С – заданное среднее значение;

σ – стандартное отклонение значений признака.

Таким образом, практический смысл процедуры нормирования состоит, например, в том, что выражение «сырых» значений шкал в Г-баллах позволяет сравнивать шкалы профиля личности между собой (для опросников СМИЛ, МЛО «Адаптивность» и др.). Так, в пределах нормы считаются личностные характеристики, показатели которых не выходят за пределы 40 –70 Г-баллов. Все значения, превышающие эти границы, рассматриваются как акцентуации характера той или иной степени выраженности (в отдельных случаях – до уровня патологических проявлений).

Одним из важнейших в математической статистике является понятие нормального распределœения. Нормальное распределœение (называемое также распределœением Гаусса), характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величинœе – часто. Нормальное распределœение возникает, когда данная случайная величина представляет собой сумму большого числа независимых случайных величин, каждая из которых играет в образовании всœей суммы незначительную роль.

Нормальное распределœение имеет колоколообразную форму, значения моды, медианы и среднего арифметического равны между собой. Было установлено, что многие биологические параметры распределœены подобным образом (рост, вес и так далее). Впоследствии психологи выяснили, что и большинство психологических свойств (показатели интеллекта͵ темпераментных особенностей, способностей и другие психические явления) также имеют нормальное распределœение. Этот принцип учитывается при стандартизации тестовых методик. При этом, чем больше объём выборки, тем более полученное эмпирическое распределœение приближается к нормальному.

Характерное свойство нормального распределœения состоит в том, что 68,26 % из всœех его наблюдений всœегда лежат в диапазоне ± 1 стандартное отклонение от среднего арифметического (какова бы ни была величина стандартного отклонения). 95,44 % - в пределах ± двух стандартных отклонений и 99,72 – в пределах ± трех стандартных отклонений.

Нормальное распределение - понятие и виды. Классификация и особенности категории "Нормальное распределение" 2017, 2018.

  • - Усеченное нормальное распределение.

    Классическое нормальное распределение НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ НАРАБОТКИ ДО ОТКАЗА Лекция 6 Нормальное распределение или распределение Гаусса является наиболее универсальным, удобным и широко применяемым. Считается, что... .


  • - Нормальное распределение

    Рассмотрим Пример 2, в котором случайная величина Х представлена выборкой {хi}. Эти данные получены оператором при измерении свойства А с помощью СИ. Значение А является постоянным. Случайные возмущения на входе и выходе СИ привели к тому, что (xj) рассеяны в диапазоне D = xmax -... .


  • - Нормальное распределение

    Равномерное распределение Некоторые абсолютно непрерывные распределения Определение.Равномерным распределением на отрезке называют распределение с плотностью ОпределениеНормальным распределением c параметрами и называют распределение с плотностью... .


  • - Логарифмически-нормальное распределение

    Определение 1. Непрерывная случайная величина называется распределённой логарифмически-нормально (логнормально), если её логарифм подчинён нормальному закону распределения. Так как при неравенства и равносильны, то функция распределения логнормального распределения... .


  • - Нормальное распределение

    Определение 7. Непрерывная случайная величина имеет нормальное распределение, с двумя параметрами a, s, если, s>0. (5) Тот факт, что случайная величина имеет нормальное распределение, будем кратко записывать в виде Х ~ N(a;s). Покажем, что p(x) – плотность (показано в... .


  • - Нормальное распределение

    Определение 7. Непрерывная случайная величина имеет нормальное распределение, с двумя параметрами a, s, если, s>0. (5) Тот факт, что случайная величина имеет нормальное распределение, будем кратко записывать в виде Х ~ N(a;s). Покажем, что p(x) – плотность (показано в...

  • Большинство экспериментальных исследований, связанных с измерениями, в том числе и в психологии, способных принимать практически любые значения в заданном интервале (что зависит от величины выборки) описываются моделью случайных непрерывных величин и соответственно – непрерывном распределении.

    Одним из непрерывных распределений, имеющим основополагающую роль в математической статистике является нормальное (или Гауссово) распределение. Нормальное распределение является самым важным в статистике, что объясняется рядом причин:

      Многие экспериментальные наблюдения можно успешно описать с помощью близкого к нормальному распределению.

      Большинство распределений, связанных со случайной выборкой, при увеличение объёма последней переходят к нормальному распределению.

      Нормальное распределение обладает рядом благоприятных математических свойств, во многом обеспечивающих его широкое применение в статистике:

      1. Имеет колоколообразную форму, симметричную относительно точки M=X,cточками перегиба, абсциссы которых отстоят отMна +.

        Для нормального распределения математическое ожидание, дисперсия и стандартное отклонение генеральной совокупности равно (сигма).

        нормальное распределение полностью определяется двумя параметрами: математическим ожиданием (средним) и стандартным отклонением.

        мода, медиана и среднее арифметическое нормального распределения совпадают и равны математическому ожиданию M.

    Исходя из того, что нормальное распределение полностью определяется двумя параметрами Mи(сигма), то при измерении этих параметров можно получить целое семейство нормальных кривых. Чтобы избежать неудобств, связанных с расчётами для каждого конкретного случая, в психологии используют так называемоенормированное (или чаще стандартное)нормальное распределение , которое и применяется для стандартизации шкал (психометрических линеек).

    Нормированное нормальное распределение, имея параметры M= 0 и= 1, имеет колоколообразную форму.

    Особенностью данной кривой является то, что площадь под кривой имеет постоянное значение (как показано на рисунке 1). Эта особенность является основной для стандартной интерпретации в эмпирических исследованиях с целью постановки психологического диагноза: так при изучении проявления, какого – либо признака, при попадании индивидуального результата в диапазон составляет 68,2% от всех случаев (т.е. у 68,2% испытуемых генеральной совокупности, степень проявления изучаемого признака будет находиться именно в этом диапазоне), что может оцениваться как среднее проявление изучаемого признака и интерпретироваться какнорма , в проявлении признака.

    Рис.1. Процентное распределение случаев под нормальной кривой.

      1. Стандартизированные шкалы.

    Показатели психометрических тестов, применяемых в практической психологии с целью постановки психологического диагноза, переводятся из первичных ("сырых" – не подвергнутых обработке) и полученных испытуемым по данному тесту в стандартные показатели, которые рассчитываются на основе линейного или нелинейного преобразования первичных показателей (при условии их распределения близкого к нормальному закону). При этом исторически сложилось наличие ряда наиболее распространённых стандартных показателей, связанных с особенностями преобразования, и отсюда – наличие "семейства" стандартных шкал, переводимых друг в друга и несводимых кZ-шкале.

    Z-шкала образуется в результате центрирования, понимаемого как линейная трансформация величин признака, при которой средняя величина распределения становится равная нулю, и процедуры нормирования посредством среднеквадратических отклонений.

    Z-шкала состоит из непрерывного континуумаZ-показателей, определяемых в виде разности между индивидуальными первичными результатами и средним значением для генеральной совокупности, делённые на стандартное отклонение распределения.

    где X– необработанные, сырые баллы,

    – Среднее,

     – стандартное отклонение.

    При этом полученная Z-шкала будет иметь среднюю точкуM=0 и единицу измерения (масштаб) 1стандартного (единичного) нормального распределения как показано на рисунке 2.

    Z-показатель может принимать как положительные, так и отрицательные значения. Большинство случаев (99,72%) значения показателей уменьшаются в пределах -3+3 и могут принимать любые значения. К достоинствамZ-показателя относится простота интерпретации и сравнения индивидуальных результатов: чем больше показатель, тем дальше от среднего (нормы) он может находиться, при этом знак указывает (+) – выше среднего; (-) – ниже среднего. Но недостатки, особенно в области прикладной (практической) психологии, к которым относят: сложность интерпретации для испытуемого (клиента), крупность масштаба единиц измерения, оперирование отрицательными и положительными величинами, побудили разработчиков тестов использовать нормализованные преобразования по форме:
    , гдеZp– преобразованный стандартный показатель;b– стандартное отклонение преобразованного распределения;Z–Z-показатель;A– среднее значение преобразованного распределения. Такой переход правомерен, так как стандартная шкала представляет собой интервальную шкалу, что позволяет выполнить линейные преобразования, при условии, что константыbиA– действительные числа.

    Разберём процедуру получения преобразованных стандартных показателей на ряде примеров:

    Было проведено эмпирическое исследование уровня уверенности в себе (опросник Рейзаса – 0-90) на выборке учителей (50 человек) из различных школ г. Н. Новгорода. В результате первичной статистической обработки были получены результаты:

      Распределение первичных результатов ("сырых баллов") по форме близко к нормальному распределению (после процедур группировки и анализа кривой распределения – полигона частот).

      Вычислены характеристики для данной выборки –

    Предлагается провести линейное преобразование и определить для различных шкал значение одного первичного результата X=45 ("сырой балл" одного из испытуемых).

      Преобразование в Z-показатель производится по формуле:

    где Z– стандартныйZ-показатель;

    X– первичный результат тестового измерения;

    M x – средняя величина результатов выборки (в нашем случае медианаMe);

    S x – стандартное отклонение для данной выборки. Найдите полученный показатель наZ-шкале (рисунок 2) и сделайте вывод о проявлении изучаемого признака у данного испытуемого.

      Преобразование в T-шкалу для опросников Мак-Колла производится по уже известной формуле (Zp=A+bZ), подставляя вместо константA=M = 50;b== 10 – полученные Мак-Коллом в результате нормализации эмпирических распределений собственных опросников, переведём результат испытуемого (X=45) в стандартныеT-баллы по формуле:

    Таким образом, результат – 25 T-баллов (стандартных баллов).

      Преобразование в шкалу станайнов Гилфорда (англ.standardnine– стандартная девятка), где оценкам присваивают целые значения от 1 до 9, приM = 5, = 2 производятся по формуле:

    В данном случае результат испытуемого будет 1 станайн (т.к. полученный результат C = 0 попал в интервал 1-го станайна).

    Данная C-шкала обладает таким замечательным свойством (см. рисунок 2), что в 1 и 9 станайны попадает по 4% испытуемых всей выборки, во 2 и 8 станайны – по 7%, и т.д. Таким образом, при ранжированном упорядочивании в сторону возрастания первичных тестовых результатов и условии их нормального (или близкому к нормальному) распределения первым 4% данных присваивается 1 станайн, последующим 7% данных – 2-ой станайн, следующим 12% данных – 3-й станайн и т.д., таким образом, данные будут упорядочены в шкалу, соответствующую стандартным частотам распределения результата.

      Преобразование в шкалу стенов Кэттела (от англ.standardten– стандартная десятка) для опросника 16PF, где оценкам присваивают целые значения от 1 до 10, приM = 5;= 2 производят по формуле:

    В данном случае результат испытуемого попадает в интервал 1-го стена.

    В тестировании интеллекта используются нормализованные шкалы:

      Шкала Векслера представленнаяIQ-стандартными баллами:

      Шкала структуры интеллекта Амтхауэра по формуле:

    С целью интерпретации данных для работников образования представляет интерес шкала Линерта:

      Шкала школьных оценок Линерта:

    Рис.2. Нормальная кривая и стандартные показатели.

    Случайные величины связаны со случайными событиями. О случайных событиях говорят тогда, когда оказывается невозможным однозначно предсказать результат, который может быть получен в тех или иных условиях.

    Предположим, мы бросаем обыкновенную монету. Обычно результат этой процедуры не является однозначно определенным. Можно лишь с уверенностью утверждать, что произойдет одно из двух: либо выпадет "орел", либо "решка". Любое из этих событий будет случайным. Можно ввести переменную, которая будет описывать исход этого случайного события. Очевидно, что эта переменная будет принимать два дискретных значения: "орел" и "решка". Поскольку мы заранее точно не можем предугадать, какое из двух возможных значений примет эта переменная, можно утверждать, что в этом случае мы имеем дело со случайными величинами.

    Предположим теперь, что в эксперименте мы проводим оценку времени реакции испытуемого при предъявлении какого-либо стимула. Как правило, оказывается, что даже тогда, когда экспериментатор предпримет все меры к тому, чтобы стандартизировать экспериментальные условия, минимизировав или даже сведя к нулю возможные вариации в предъявлении стимула, измеренные величины времени реакции испытуемого все равно будут различаться. В таком случае говорят, что время реакции испытуемого описывается случайной величиной. Поскольку в принципе в эксперименте мы можем получить любое значение времени реакции – множество возможных значений времени реакции, которые можно получить в результате измерений, оказывается бесконечным, – говорят о непрерывности этой случайной величины.

    Возникает вопрос: существуют ли какие-либо закономерности в поведении случайных величин? Ответ на этот вопрос оказывается утвердительным.

    Так, если провести бесконечно большое число подбрасываний одной и той же монеты, можно обнаружить, что число выпадений каждой из двух сторон монеты окажется примерно одинаковым, если, конечно, монета не фальшивая и не гнутая. Чтобы подчеркнуть эту закономерность, вводят понятие вероятности случайного события. Ясно, что в случае с подбрасыванием монеты одно из двух возможных событий произойдет непременно. Это обусловлено тем, что суммарная вероятность этих двух событий, иначе называемая полной вероятностью, равна 100%. Если предположить, что оба из двух событий, связанных с испытанием монеты, происходят с равными долями вероятности, то вероятность каждого исхода в отдельности, очевидно, оказывается равной 50%. Таким образом, теоретические размышления позволяют нам описать поведение данной случайной величины. Такое описание в математической статистике обозначается термином "распределение случайной величины" .

    Сложнее обстоит дело со случайной величиной, которая не имеет четко определенного набора значений, т.е. оказывается непрерывной. Но и в этом случае можно отметить некоторые важные закономерности ее поведения. Так, проводя эксперимент с измерением времени реакции испытуемого, можно отметить, что различные интервалы длительности реакции испытуемого оцениваются с разной степенью вероятности. Скорее всего, редко, когда испытуемый будет реагировать слишком быстро. Например, в задачах семантического решения испытуемым практически не удается более или менее точно реагировать со скоростью менее 500 мс (1/2 с). Аналогично маловероятно, что испытуемый, добросовестно следующий инструкциям экспериментатора, будет сильно затягивать свой ответ. В задачах семантического решения, например, реакции, оцениваемые более чем 5 с, обычно рассматриваются как недостоверные. Тем не менее со 100%-ной уверенностью можно предполагать, что время реакции испытуемого окажется в диапазоне от О до +со. Но эта вероятность складывается из вероятностей каждого отдельного значения случайной величины. Поэтому распределение непрерывной случайной величины можно описать в виде непрерывной функции у = f (х ).

    Если мы имеем дело с дискретной случайной величиной, когда все возможные ее значения заранее известны, как в примере с монетой, построить модель ее распределения, как правило, оказывается не очень сложным. Достаточно ввести лишь некоторые разумные допущения, как мы это сделали в рассматриваемом примере. Сложнее обстоит дело с распределением непрерывных величии, принимающих заранее неизвестное число значений. Конечно, если бы мы, например, разработали теоретическую модель, описывающую поведение испытуемого в эксперименте с измерением времени реакции при решении задачи семантического решения, можно было бы попытаться на основе этой модели описать теоретическое распределение конкретных значений времени реакции одного и того же испытуемого при предъявлении одного и того же стимула. Однако такое не всегда оказывается возможным. Поэтому экспериментатор бывает вынужденным предположить, что распределение интересующей его случайной величины описывается каким-либо уже заранее исследованным законом. Чаще всего, хотя это, возможно, и не всегда оказывается абсолютно корректным, для этих целей используется так называемое нормальное распределение, выступающее в качестве эталона распределения любой случайной величины независимо от ее природы. Это распределение впервые было описано математически еще в первой половине XVIII в. де Муавром.

    Нормальное распределение имеет место тогда, когда интересующее нас явление подвержено влиянию бесконечного числа случайных факторов, уравновешивающих друг друга. Формально нормальное распределение, как показал де Муавр, может быть описано следующим соотношением:

    где х представляет собой интересующую нас случайную величину, поведение которой мы исследуем; Р – значение вероятности, связанное с этой случайной величиной; π и е – известные математические константы, описывающие соответственно отношение длины окружности к диаметру и основание натурального логарифма; μ и σ2 – параметры нормального распределения случайной величины – соответственно математическое ожидание и дисперсия случайной величины х.

    Для описания нормального распределения оказывается необходимым и достаточным определение лишь параметров μ и σ2.

    Поэтому если мы имеем случайную величину, поведение которой описывается уравнением (1.1) с произвольными значениями μ и σ2, то можем обозначить его как Ν (μ, σ2), не держа в памяти всех деталей этого уравнения.

    Рис. 1.1.

    Любое распределение можно представить наглядно в виде графика. Графически нормальное распределение имеет вид колоколообразной кривой, точная форма которой определяется параметрами распределения, т.е. математическим ожиданием и дисперсией. Параметры нормального распределения могут принимать практически любые значения, которые оказываются ограничены лишь используемой экспериментатором измерительной шкалой. В теории значение математического ожидания может равняться любому числу из диапазона чисел от -∞ до +∞, а дисперсия – любому неотрицательному числу. Поэтому существует бесконечное множество различных видов нормального распределения и соответственно бесконечное множество кривых, его представляющих (имеющих, однако, сходную колоколообразную форму). Понятно, что все их описать невозможно. Однако, если известны параметры конкретного нормального распределения, его можно преобразовать к так называемому единичному нормальному распределению, математическое ожидание для которого равно нулю, а дисперсия – единице. Такое нормальное распределение называют еще стандартным или z-распределением. График единичного нормального распределения представлен на рис. 1.1, откуда очевидно, что вершина колоколообразной кривой нормального распределения характеризует величину математического ожидания. Другой параметр нормального распределения – дисперсия – характеризует степень "распластанности" колоколообразной кривой относительно горизонтали (оси абсцисс).

    Читатель наверняка уже обратил внимание на особенности распределения, представленного в таблице 1 и на рисунке 2. Большинство случаев расположены в центре ряда, а приближаясь к крайним значениям, происходит долгий плавный спад. На графике нет разрывов - нет классов, которые были бы отделены друг от друга. Кроме этого, график по обе стороны симметричен; это означает, что если его разделить вертикальной линией по центру, то получившиеся две половинки окажутся примерно одинаковыми. Такой график распределения своей формой похож на колокол, это так называемое «нормальное распределение», которое чаще всего встречается при измерениях индивидуальных различий. В своем идеальном виде нормальное распределение изображено на рисунке 3.

    Понятие нормального распределения в статистике используется уже давно. Вероятность какого-либо события представляет собой частоту его наступления, зафиксированного очень большим количеством наблюдений. Эта вероятность представляет собой определенное соотношение, точнее, дробь, числителем которой является ожидаемый результат, а знаменателем - все возможные результаты. Таким образом, вероятность, или шансы, того, что две монеты выпадут одной и той же стороной, например решкой, будет один к четырем, или 1 / 4 . Это следует из того факта, что существует всего четыре возможные комбинации выпадения монет РР, РО, ОР, ОО, где Р - решка, а О - орел. Одна из четырех, РР, означает выпадение только решек. Вероятность выпадения двух орлов будет также составлять 1 / 4 , а вероятность выпадения решки какой-либо одной монеты при выпадении орла другой составит один к двум, или 1 / 2 . Даже если число монет увеличить, скажем, до 100, и количество возможных комбинаций станет очень большим, то мы по-прежнему сможем математически определить вероятность возникновения каждой комбинации, например, выпадения всех решек или 20 решек и 80 орлов. Эти вероятности, или ожидаемую частоту выпадений, можно изобразить графически описанным выше методом. Если число монет будет очень велико, то построенный график окажется колокольной формы, то есть графиком нормального распределения.


    0 1 2 3 4 5 6 Количество выпадений решек

    Рис. 4. Теоретическое (пунктир, линия) и фактически наблюдаемое (сплошная линия) распределение количества выпадений решек в 128 случаях подбрасывания шести монет. (Данные из Гилфорда, 10, с. 119.)


    Рис. 3. График нормального распределения

    На рисунке 4 можно найти теоретический и фактический графики, показывающие количество выпадения решек в 128 случаях подбрасывания шести монет. При каждом броске число решек, естественно, может варьироваться от 0 до 6. Чаще всего будет выпадать комбинация из трех решек (и трех орлов). Частота возрастает или понижается, когда число решек становится меньше или больше трех. На рисунке 4 теоретически вычисленные вероятности обозначены пунктирной линией, в то время как реальная частота, полученная в результате 128 последовательных подбрасываний шести монет, начерчена непрерывной линией. Необходимо заметить, что ожидаемые и фактически полученные результаты достаточно близки друг к другу. Чем больше количество наблюдений (или бросков), тем больше вероятность их совпадения.

    Чем большее количество монет подбрасывается, тем ближе будет график теоретически ожидаемого распределения к графику нормальной вероятности. Говорят, что результаты, получаемые при подбрасывании монет или бросании игральных костей, зависят от «случайности». Под этим подразумевается, что результат определяется большим количеством независимых факторов, влияние которых учесть невозможно. Высота, с которой бросают монету или игральную кость, ее вес и размер, подкрутка, которую делает бросающий, и многие другие подобные факторы определяют в каждом отдельном случае, какой стороной упадет монета. График нормального распределения был впервые построен математиками Лапласом и Гауссом в связи с исследованиями ими игры случая, распределения отклонений в наблюдениях и других типов случайных изменений.

    Уже в девятнадцатом веке бельгийский статистик Адольф Кутелет первым применил понятие нормального распределения к исследованию качеств человека (ср. 4). Кутелет обратил внимание на то, что определенные измерения роста, объема грудной клетки армейских призывников распределялись в соответствии с графиком вероятности колокольной формы. На основании сходства этого графика с данными человеческой изменчивости, он построил теорию, согласно которой такая человеческая изменчивость имеет место, когда природа стремилась воплотить «идеал», или норму, но в силу различных обстоятельств потерпела неудачу. Иными словами, человеческий рост, вес, уровень интеллектуального развития зависят от огромного количества независимых факторов, так что конечный результат окажется распределенным в соответствии с теорией вероятности. Опыт Кутелета по применению графика нормального распределения был переосмыслен и развит Гальтоном, чей вклад в дифференциальную психологию уже обсуждался нами в главе 1. У Гальтона график нормального распределения получил широкое и разнообразное применение, многие наработки были связаны с квантификацией и преобразованием данных, касающихся как индивидуальных, так и групповых различий.

    Определить, является ли распределение, воспроизведенное в таблице 1 и на рисунке 2, «нормальным» можно путем применения соответствующих математических процедур. Несмотря на незначительные отклонения, этот график не отличается существенно от графика нормального распределения. Таким образом, мы можем сделать вывод, что его расхождение с нормой находится в пределах ожидаемых флуктуации, и считать его графиком нормального распределения. Многие распределения, открытые в дифференциальной психологии, так же соответствуют математическим вариантам нормального распределения, особенно когда они получаются в результате применения тщательно сконструированных измерительных приборов на больших репрезентативных выборках. В остальных случаях распределение может соответствовать нормальному лишь приблизительно. Оно может представлять собой некую непрерывность и быть более или менее симметричным, отражая то, что большинство индивидов находятся в центре ряда, а ближе к крайним значениям их количество постепенно и плавно снижается.

    На рисунках 5-10 мы видим примеры графиков распределения, отражающих широкое разнообразие свойств человека. Эти распределения были выбраны специально, потому что они основаны на больших репрезентативных выборках, большинство из которых включало в себя 1000 и более случаев. Два графика, построенные для меньших групп, приводятся для того, чтобы показать распределение физиологических и личностных характеристик в таких областях, где данные для больших групп сравнительно скудные.


    Рис. 5. Распределение роста у 8585 коренных англичан. (Данные из Юля и Кенделла, 34, с. 95.)


    Рис. 6. Распределение качества, связанного с возможностями легких, у 1633 студентов мужского колледжа. (Данные из Харриса и др., 12, с. 94.)

    Пример распределения слабоструктурированного качества дан на рисунке 5, который показывает рост в дюймах 8585 коренных англичан. Можно заметить, что график практически совпадает с математически нормальным графиком. На рисунке 6 представлен частотный график более функционального, физиологического качества, связанного с возможностями легких. Это измеряющийся в кубических сантиметрах объем воздуха, который выдувается из легких после максимально глубокого вдоха. Необходимые для построения графика измерения были сделаны на 1633 студентах мужского колледжа. Общее соответствие нормальному графику здесь так же очевидно.

    Рисунок 7 связан с физиологическими измерениями, которые, как считается, имеют отношение к эмоциональным и личностным свойствам. На нем показано распределение показателей 87 детей по данным композиционного измерения автономного баланса. Высокие результаты в этом исследовании показывают функциональное преобладание парасимпатического отдела периферической нервной системы; низкие значения - функциональное преобладание ее симпатического отдела. Для психологов периферическая нервная система представляет особый интерес, он связан с той ролью, которую она играет в эмоциональном поведении.

    График, представленный на рисунке 8 иллюстрирует распределение результатов теста на скорость и точность восприятия. Результатом является общее число вычеркнутых за одну минуту букв А на пестром листе. Этот тест считается просто тестом на внимание и восприятие, хотя скорость и координация движений здесь тоже имеют значение. В этой связи можно вспомнить данные теста на простое научение, зафиксированные в таблице 1 и на рисунке 2. Этот тест требовал применения кода, состоявшего из парных, не имеющих смысла слогов. Оба теста предлагались одной и той же группе, состоящей из 1000 студентов колледжа, и оба дали распределения, лежащие в пределах ожидаемых математических значений нормального графика.


    Показатель автономного баланса

    Рис. 7. Распределение значений оценок автономного баланса у 87 детей в возрасте от 6 До 12 лет. (Данные из Уингера и Эллингтона, 33, с. 252.)


    Рис. 8. Количество вычеркнутых за одну минуту букв А 1000 студентами колледжа. (Данные из Анастази, 2, с. 32.)


    Рис. 9. Измерение IQ репрезентативной выборки, состоящей из 2904 детей в возрасте от 2 до 18 лет, по шкале Стэнфорд - Бине. (Данные от Термена и Меррилла, 27, с. 37.)

    На рисунке 9 мы видим типичные результаты применения интеллектуального теста в условиях большой выборки. Она показывает распределение IQ (Стэнфорд - Бине, редакция 1937 года) 2904 детей в возрасте от 2 до 18 лет. График показывает, что в наибольшем проценте случаев IQ испытуемых находится в пределах среднего интервала, от 95 до 104 баллов. Процент постепенно снижается до 1, поскольку IQ лишь очень малого числа детей находится в пределах между 35 и 44 и между 165 и 174 баллами. В данное распределение не включались данные по находящимся в интернатах слабоумным детям, выборка была также ограничена и по ряду других параметров. Так, в нее вошли только белые американцы с несколько преувеличенной (по сравнению с реальным населением страны) пропорцией городских жителей. Большую часть выборки составили учащиеся начальной школы, и хотя организаторы стремились к тому, чтобы обеспечить полноценное участие в тестировании групп старших и самых младших возрастов, их число едва ли соответствовало числу тестируемых учащихся начальной школы. Отметим, что весь ряд IQ для целостной популяции, на самом деле, как свидетельствуют данные, полученные разными исследователями, простирается от значений, близких к 0, до значений, несколько превышающих 200.



    Рис. 10. Распределение 600 учениц колледжа по результатам теста Оллпорта на доминирование-подчинение. (Данные из Рагглза и Оллпорта, 24, с. 520.)

    В качестве последней иллюстрации рассмотрим рисунок 10, содержащий распределение результатов широко используемого личностного опросника. График показывает распределение 600 учениц колледжа по результатам теста Оллпорта на доминирование-подчинение. Целью этого личностного опросника было исследование стремления индивида доминировать над другими членами группы в повседневной жизни или подчиняться им. Рисунок 10 показывает, что, несмотря на биполярное определение качества (противопоставление доминирования и подчинения), большинство результатов испытуемых располагаются вокруг середины шкалы и распределение приближается к нормальному. Иными словами, биполярное наименование качества не должно вводить нас в заблуждение, что индивидов можно классифицировать на доминирующих и подчиняющихся. Как и другие измеряемые свойства человека, данное личностное качество имеет множество степеней проявления; и при этом большинство людей относятся к промежуточным типам.


    Рис. 11. Скошенное распределение

    Лучшие статьи по теме