Для школьников и родителей
  • Главная
  • Развивашки
  • Анализ звука. Гармонический анализ Гармоническим анализом звука называют установление числа тонов

Анализ звука. Гармонический анализ Гармоническим анализом звука называют установление числа тонов

На практике чаще приходится решать обратную по отношению к рассмотренной выше задачу – разложение некоторого сигнала на составляющие его гармонические колебания. В курсе математического анализа подобная задача традиционно решается разложением заданной функции в ряд Фурье, т. е. в ряд вида:

где i =1,2,3….

Практическое разложение в ряд Фурье, называемое гармоническим анализом , состоит в нахождении величин a 1 ,a 2 ,…,a i , b 1 ,b 2 ,…,b i , называемых коэффициентами Фурье. По значению этих коэффициентов можно судить о доле в исследуемой функции гармонических колебаний соответствующей частоты, кратной ω . Частоту ω называют основной или несущей частотой, а частоты 2ω, 3ω,… i·ω – соответственно 2-й гармоникой, 3-й гармоникой, i -й гармоникой. Применение методов математического анализа позволяет разложить в ряд Фурье большинство функций, описывающих реальные физические процессы. Применение этого мощного математического аппарата возможно при условии аналитического описания исследуемой функции, что является самостоятельной и, часто, не простой задачей.

Задача гармонического анализа может формулироваться как поиск в реальном сигнале факта присутствия той или иной частоты. Например, существуют методы определения частоты вращения ротора турбокомпрессора, основанные на анализе звука, сопровождающего его работу. Характерный свист, слышимый при работе двигателя с турбонаддувом, вызван колебаниями воздуха из-за движения лопаток рабочего колеса компрессора. Частота этого звука и частота вращения рабочего колеса пропорциональны. При использовании аналоговой измерительной аппаратуры в этих случаях поступают примерно так: одновременно с воспроизведением записанного сигнала с помощью генератора создают колебания заведомо известной частоты, перебирая их в исследуемом диапазоне до возникновения резонанса. Частота генератора, соответствующая резонансу, будет равна частоте исследуемого сигнала.

Внедрение цифровой техники в практику измерений позволяет решать подобные задачи с применением расчетных методов. Прежде чем рассмотреть основные идеи, заложенные в этих расчетах, покажем отличительные особенности цифрового представления сигнала.

Дискретные методы гармонического анализа

Рис. 18. Квантование по амплитуде и времени

а – исходный сигнал; б – результат квантования;

в , г – сохраненные данные

При использовании цифровой аппаратуры реальный непрерывный сигнал (рис. 18, а ) представляется набором точек, точнее значениями их координат. Для этого исходный сигнал, идущий, например, с микрофона или акселерометра, квантуется по времени и по амплитуде (рис. 18, б ). Иначе говоря, измерение и запоминание величины сигнала происходит дискретно через некоторый интервал времени Δt , а само значение величины в момент измерения округляется до возможной ближайшей величины. Время Δt называют временем дискретизации , которое связано с частотой дискретизации обратной зависимостью.

Количество интервалов, на которое разбита двойная амплитуда максимально допустимого сигнала, определяется разрядностью аппаратуры. Очевидно, что для цифровой электроники, оперирующей в конечном итоге булевыми величинами («единица» или «ноль»), все возможные значения разрядности будут определяться как 2 n . Когда мы говорим, что звуковая карта нашего компьютера 16-разрядная, это означает, что весь допустимый интервал входной величины напряжения (ось ординат на рис. 11) будет разбит на 2 16 = 65536 равных интервалов.

Как видно из рисунка, при цифровом способе измерения и хранения данных, часть исходной информации будет потеряна. Для повышения точности измерений следует повышать разрядность и частоту дискретизации преобразующей техники.

Вернемся к поставленной задаче – определению в произвольном сигнале присутствия определенной частоты. Для большей наглядности используемых приемов, рассмотрим сигнал, являющийся суммой двух гармонических колебаний: q=sin 2t +sin 5t , заданных с дискретностью Δt=0,2 (рис. 19). В таблице рисунка приведены значения результирующей функции, которые будем далее рассматривать как пример некоторого произвольного сигнала.

Рис. 19. Исследуемый сигнал

Для проверки присутствия в исследуемом сигнале интересующей нас частоты умножим исходную функцию на зависимость изменения колебательной величины при проверяемой частоте. После чего сложим (численно проинтегрируем) полученную функцию. Умножать и суммировать сигналы будем на определенном интервале – периоде несущей (основной) частоты. При выборе значения основной частоты, надо учитывать, что проверить возможно только большую, по отношению к основной, в n раз частоту. Выберем в качестве основной частоты ω =1, которой соответствует период.

Начнем проверку сразу с «правильной» (присутствующей в сигнале) частотыy n =sin2x . На рис. 20 описанные выше действия представлены графически и численно. Следует обратить внимание, что результат умножения проходит преимущественно выше оси абсцисс, и поэтому сумма заметно больше нуля (15,704>0). Подобный результат был бы получен и при умножении исходного сигнала на q n =sin5t (пятая гармоника тоже присутствует в исследуемом сигнале). Причем результат подсчета суммы будет тем больше, чем больше амплитуда проверяемого сигнала в исследуемом.

Рис. 20. Проверка присутствия в исследуемом сигнале составляющей

q n = sin2t

Теперь выполним те же действия для не присутствующей в исследуемом сигнале частоты, например, для третьей гармоники (рис. 21).

Рис. 21. Проверка присутствия в исследуемом сигнале составляющей

q n =sin3t

В этом случае кривая результата умножения (рис. 21) проходит как в области положительных амплитуд, так и отрицательных. Численное интегрирование этой функции даст результат, близкий к нулю (=-0,006), что указывает на отсутствие этой частоты в исследуемом сигнале или, говоря другими словами, амплитуда исследуемой гармоники близка к нулю. Теоретически мы должны были получить ноль. Погрешность вызвана ограничениями дискретных методов из-за конечной величины разрядности и частоты дискретизации. Повторяя описанные выше действия нужное количество раз, можно выяснить наличие и уровень сигнала любой частоты, кратной несущей.

Не углубляясь в подробности можно сказать, что примерно такие действия выполняют в случае так называемого дискретного преобразования Фурье .

В рассмотренном примере для большей наглядности и простоты все сигналы имели одинаковый (нулевой) начальный фазовый сдвиг. Для учета возможных различных начальных фазовых углов описанные выше действия выполняют с комплексными числами.

Известно множество алгоритмов дискретного преобразования Фурье. Результат преобразования – спектр – часто представляют не линейчатым, а сплошным. На рис. 22 показаны оба варианта спектров для исследуемого в рассмотренном примере сигнала

Рис. 22. Варианты спектров

Действительно, если бы мы в рассмотренном выше примере выполнили проверку не только для частот строго кратных основной, но и в окрестностях кратных частот, то обнаружили бы, что метод показывает наличие эти гармонических колебаний с амплитудой больше нуля. Применение сплошного спектра при исследовании сигналов обосновано еще и тем, что выбор основной частоты в исследованиях носит во многом случайный характер.

В случае гармонических звуковых колебаний среды наше ощущение высоты звука объективно соответствует частоте колебаний. Если звуковые колебания среды негармоничны, то, пользуясь теоремой Фурье, такие колебания можно представить как сумму гармонических колебаний с кратными частотами. В этом случае составляющее гармоническое колебание, характеризуемое наименьшей частотой называют основным тоном, а все другие - обертонами (первый обертон имеет частоту второй ).

Рис. 163. Резонатор Гельмгольца.

Явление акустического резонанса позволяет опытным путем анализировать звуковые негармонические колебания сложной формы, т. е. определять частоту основного тона и относительную силу обертонов. Для такого анализа звуков может служить набор резонаторов Гелъмгольца, представляющих собой полые шары различных размеров, изготовленные из стекла или латуни (рис. 163) и имеющие по два отверстия: одно широкое, через которое колебания воздуха передаются внутрь шара, и другое узкое, которое экспериментатор вставляет в ухо. Звук любой формы возбуждает в резонаторе Гельмгольца собственные колебания воздуха, частота которых определяется объемом воздуха, заключенного в резонаторе. Но эти собственные колебания воздуха только тогда приобретают большую амплитуду и дают ощущение громкого звука, когда их частота близка к частоте основного тона или к частоте какого-либо сильного обертона возбудившего их звука. Таким образом, слушая некоторый звук и последовательно прикладывая к уху различные резонаторы Гельмгольца, собственные частоты которых известны, нетрудно определить частоту основного тона исследуемого звука и частоты тех. обертонов, которые имеют наибольшую амплитуду.

Для более точного анализа звуков применяют электроакустические приборы, в которых звуковые колебания преобразуются в электрические колебания той же формы и эти электрические колебания разлагаются на гармонические составляющие.

Результаты анализа звука часто выражают графически в виде акустического спектра: на оси абсцисс откладывают частоты, на оси ординат - относительные силы гармонических составляющих (основного тона и обертонов), выраженные в процентах от силы

наиболее интенсивной составляющей; обычно для ординат пользуются логарифмическим масштабом. На рис. 164 представлены акустические спектры для некоторых звуков, издаваемых музыкальными инструментами (частота основного тона анализируемого звука указана в скобках на каждом спектре рядом с названием инструмента).

Рис. 164. Акустические спектры.

Положение вертикальных штрихов указывает частоты гармонических составляющих анализируемого звука, а высота этих штрихов определяет относительную силу этих составляющих. Из приведенных спектров видно, сколь сложен каждый звук, издаваемый музыкальным инструментом.

Рис. 165. Основной и добавочные тоны камертона.

Частоту основного тона такого сложного звука мы воспринимаем как высоту звука; сила и число обертонов и характер нарастания звука определяют тембр звука.

Наиболее «чистый» звук (т. е. звук со слабыми и малочисленными обертонами) - можно получить посредством камертона, если осторожно провести смычком скрипки по свободному концу ветвей камертона. Чтобы этот звук был явственно слышен, камертон ставят на резонаторный ящик, открытый с одного конца (длина этого ящика должна быть равна четверти длины волны основного тона камертона в воздухе).

Ветви камертона колеблются так, что образуется стоячая волна, показанная пунктиром на рис. 165, а. На это колебание, которое соответствует основному тону, накладываются колебания, которые

порождают добавочные тоны, причем заметно выражены те гармонические колебания, частоты которых в Раз превосходят частоту основного тона.

Если провести смычком скрипки несколько ниже середины ветви камертона, то преобладающим колебанием будет то, которое показано на рис. 165, б. В этом случае камертон издает весьма чистый первый добавочный тон, частота которого в раз больше частоты основного тона.

Частота основного тона звука, издаваемого музыкальной трубой (например, флейтой, кларнетом, фаготом и др.), зависит от длины столба воздуха, резонансные колебания которого усиливают возбужденный в трубе звук. В этом столбе воздуха возникают стоячие звуковые волны, причем если труба открыта с обоих концов, то на концах трубы будут находиться пучности стоячей волны; если же труба открыта только с одного конца; то у открытого конца будет находиться пучность, а у закрытого - узел.

Рис. 166. Колебания воздуха в трубе, открытой с обоих концов (а) и с одного конца (б).

В любой стоячей волне расстояние между пучностями всегда равно половине длины волны, поэтому основной тон звука, резонансно усиливаемого открытой с обоих концов трубой, имеет длину волны, равную удвоенной длине трубы. Одновременно с этим основным колебанием в трубе, открытой с обоих концов, могут происходить колебания со всеми кратными частотами (рис. 166).

Если труба закрыта с одного конца, то основной тон звука, резонансно усиливаемого этой трубой, будет иметь длину волны, равную учетверенной длине трубы (в этом случае, как было упомянуто, у открытого конца трубы будет находиться пучность, а у закрытого - узел; расстояние же между пучностью и узлом равно четверти длины волны).

Сопоставляя рис. 166, а и б, нетрудно сообразить, что для трубы, закрытой с одного конца, числа колебаний основного тона и обертонов будут относиться, как четные

обертоны отсутствуют (действительно, если мы разрежем вертикально посредине рис. 166, а и отбросим фигуры, где в середине трубы имеется пучность, а не узел, то получим изображение всех возможных стоячих волн в трубе, закрытой с одного конца, т. е. получим рис. 166, б).

Частотный состав звука, издаваемого струной, зависит от длины, массы и натяжения струны, а также и от способа возбуждения колебаний струны. Основной тон и обертоны звука, издаваемого струной, соответствуют стоячим волнам поперечных колебаний струны.

Стоячие волны в струнах были исследованы Мельде (1860), схема опытов которого ппедставлена на рис. 167. Мельде для возбуждения колебаний струны пользовался камертоном, к одной из ветвей которого был прикреплен один конец струны, тогда как другой конец струны был переброшен через блок и нагружен гирей. Указанный способ возбуждения колебаний интересен в том отношении, что в данном случае продольные импульсы, сообщаемые камертоном струне, порождают поперечные колебания струны. Это - случай так называемого параметрического возбуждения колебаний (от слова «параметр» - величина; воздействие колеблющегося камертона на струну заключается в периодическом изменении величины натяжения струны).

Рис. 167. Опыт Мельде.

В опыте Мельде стоячие волны колебаний струны образуются и являются резко выраженными при определенном соотношении между числом колебаний камертона и собственной частотой поперечных колебаний струны. Этот случай резонанса называют параметрическим резонансом; он наблюдается, когда частота внешнего воздействия (частота камертона) в целое число раз превышает собственную частоту колебаний системы (струны). Собственная частота поперечных колебаний струны пропорциональна корню квадратному из натяжения струны. Воспроизводя опыт Мельде, нетрудно подобрать такую гирю, натягивающую струну, чтобы собственная частота колебаний струны была в два раза меньше частоты колебаний камертона; тогда образуется стоячая волна, показанная на рис. 167, А. При гире в четыре раза меньшего веса возникает узел посредине струны (рис. 167, В); если уменьшить вес гири в 9, 16, 25 и т. д. раз, то число узлов каждый раз возрастает на единицу.

Законы колебания струн открыл Мерсён (1636). Эти законы были обобщены Тейлором (1713) в формуле, выведенной теоретически:

здесь при означает частоту основного тона, издаваемого струной; при и т. д. означает частоту соответствующего обертона; длина струны; натяжение струны; масса единицы длины струны.

Относительная сила обертонов зависит от способа возбуждения колебаний струны. Например, если осторожно провести смычком посредине струны, где находится узел стоячей волны первого обертона, то возбуждается звук, почти не содержащий первого обертона.

Рис. 168. Область частот, характерных для гласных звуков (форманты гласных звуков).

Звуки речи излучаются голосовыми связками, колебания которых имеют очень сложный характер. Благодаря резонансным свойствам полости глотки и главным образом полости рта характер звука, излучаемого связками, претерпевает резкое изменение: отдельные компоненты, частоты которых приближаются к собственным частотам резонансных полостей, усиливаются, и именно на них и сосредоточивается максимальная энергия излучаемого звука. Так как собственная частота полости определяется ее размерами и формой, то очевидно, что положение максимально усиливаемых компонентов определяется формой, придаваемой полости рта при произнесении того или иного речевого звука.

Мы знаем по ежедневному опыту, что каждому звуку речи соответствует известная форма полости рта, определяемая положением языка и губ; следовательно, каждому звуку речи соответствует одна или несколько характеристических областей частот, лежащих вблизи собственных частот резонирующих полостей. Именно эта концентрация звуковой энергии в определенных (для гласных звуков очень узких) областях частот и дает нам возможность отличать звуки речи один от другого. Эти характерные для каждого речевого звука области частот называют формантами. Положение формант отдельных гласных звуков показано на рис. 168: двумя крестами обозначены основные (главные) форманты, одним крестом обозначены второстепенные форманты, характеризующие главным образом индивидуальные особенности тембра.

Согласные звуки, по своей природе скорее приближающиеся к шумам, также характеризуются формантами. Однако формантные области здесь шире, чем у гласных, охватывая значительно более широкий диапазон частот. Нужно заметить, что в процессе возбуждения отдельных согласных звуков участвуют не только голосовые связки, но и сами резонансные полости, например при произнесении согласной «с» струя воздуха продувается между языком и зубами; этим и определяется ее свистящий характер. Для некоторых согласных форманты лежат в области очень высоких частот (например, спектр согласной «с» простирается до гц).

В отличие от музыкальных звуков, в которых всегда можно обнаружить совокупность гармонических колебаний, шумы представляют собой звуки,

обусловленные процессами, частота и амплитуда которых изменяются со временем. Как было пояснено выше, для музыкальных звуков является характерным линейчатый акустический спектр. В шуме, если попытаться разложить его на гармонические колебания, обнаоуживаются колебания всех частот, вплоть до очень высоких частот порядка гц. На рис. 169 представлен в качестве примера спектр шума бунзеновской горелки.

Рис. 169. Спектр шума бунзеновской газовой горелки.

    Разложение сложного звука на ряд простых волн. Возможны 2 вида анализа звука: частотный по частотам его гармонических составляющих, и временной, основанный на изучении изменения сигнала во времени … Большой Энциклопедический словарь

    Разложение сложного звука на ряд простых волн. Возможны 2 вида анализа звука: частотный по частотам его гармонических составляющих, и временной, основанной на изучении изменения сигнала во времени. * * * АНАЛИЗ ЗВУКА АНАЛИЗ ЗВУКА, разложение… … Энциклопедический словарь

    анализ звука - garso analizė statusas T sritis automatika atitikmenys: angl. sound analysis vok. Schallanalyse, f rus. анализ звука, m pranc. analyse de son, f … Automatikos terminų žodynas

    анализ звука - garso analizė statusas T sritis fizika atitikmenys: angl. sound analysis vok. Schallanalyse, f rus. анализ звука, m pranc. analyse de son, f … Fizikos terminų žodynas

    Разложение сложного звука на ряд простых волн. Возможны 2 вида А. з.: частотный по частотам его гармонии, составляющих, и временной, осн. на изучении изменения сигнала во времени … Естествознание. Энциклопедический словарь

    Разложение сложного звук. процесса на ряд простых колебаний. Применяются два вида З. а.: частотный и временной. При частотном З. а. звук. сигнал представляется суммой гармонич. составляющих, характеризующихся частотой, фазой и амплитудой.… … Физическая энциклопедия

    Разложение сложного звукового процесса на ряд простых колебаний. Применяются 2 вида З. а.: частотный и временной. При частотном З. а. звуковой сигнал представляется суммой гармонических составляющих (см. Гармонические колебания) … Большая советская энциклопедия

    АНАЛИЗ - 1) Сделать а. звука посредством слуха значит различить в отдельном тоне (созвуке) наших музык. инструментов содержащиеся в нем частичные тоны. Сумму колебаний, порождающую созвук, и составленную из разнообразных единичных колебаний, наше ухо… … Музыкальный словарь Римана

    анализ слоговой структуры слова - Данный вид анализа Л.Л. Касаткин рекомендует проводить по следующей схеме: 1) привести фонетическую транскрипцию слова, обозначив слоговые согласные и неслоговые гласные; 2) построить волну сонорности слова; 3) под буквами трансрипции цифрами… … Словарь лингвистических терминов Т.В. Жеребило

    Явление необратимого перехода энергии звуковой волны в др. виды энергии и, в частности, в теплоту. Характеризуется коэфф. поглощения а, к рый определяется как обратная величина расстояния, на к ром амплитуда звуковой волны уменьшается в е=2,718… … Физическая энциклопедия

Книги

  • Современный русский язык. Теория. Анализ языковых единиц. В 2 частях. Часть 2. Морфология. Синтаксис , . Учебник создан в соответствии с Федеральным государственным образовательным стандартом по направлению подготовки 050100 - Педагогическое образование (профили "русский язык" и "литература",…
  • От звука к букве. Звукобуквенный анализ слов. Рабочая тетрадь для детей 5-7 лет. ФГОС , Дурова Ирина Викторовна. Рабочая тетрадь`От звука к букве. Звукобуквенный анализ слов`входит в учебно-методический комплект`Обучение чтению дошкольников`. Предназначена для занятий с детьми старшей и подготовительной…

При помощи наборов акустических резонаторов можно установить, какие тоны входят в состав данного звука и с какими амплитудами они присутствуют в данном звуке. Такое установление гармонического спектра сложного звука называется его гармоническим анализом. Раньше такой анализ действительно производился с помощью наборов резонаторов, в частности резонаторов Гельмгольца, представляющих собой полые шары разного размера, снабженные отростком, вставляющимся в ухо, и имеющие отверстие с противоположной стороны (рис. 43). Действие такого резонатора, как и действие резонансного ящика камертона, мы объясним ниже (§51). Для анализа звука существенно то, что всякий раз, когда в анализируемом звуке содержится тон с частотой резонатора, последний начинает громко звучать в этом тоне.

Рис. 43. Резонатор Гельмгольца

Такие способы анализа, однако, очень неточны и кропотливы. В настоящее время они вытеснены значительно более совершенными, точными и быстрыми электроакустическими способами. Суть их сводится к тому, что акустическое колебание сначала преобразуется в электрическое колебание с сохранением той же формы, и следовательно, имеющее такой же спектр (§ 17); затем уже это электрическое колебание анализируется электрическими методами.

Укажем один существенный результат гармонического анализа, касающийся звуков нашей речи. По тембру мы можем узнать голос человека. Но чем различаются звуковые колебания, когда один и тот же человек поет на одной и той же ноте различные гласные: а, и, о, у, э? Другими словами, чем различаются в этих случаях периодические колебания воздуха, вызываемые голосовым аппаратом при разных положениях губ и языка и изменениях формы полостей рта и горла? Очевидно, в спектрах гласных должны быть какие-то особенности, характерные для каждого гласного звука, сверх тех особенностей, которые создают тембр голоса данного человека. Гармонический анализ гласных подтверждает это предположение, а именно, гласные звуки характеризуются наличием в их спектрах областей обертонов с большой амплитудой, причем эти области лежат для каждой гласной всегда на одних и тех же частотах, независимо от высоты пропетого гласного звука. Эти области сильных обертонов называются формантами. Каждая гласная имеет две характерные для нее форманты. На рис. 44 показано положение формант гласных у, о, а, э, и.

Очевидно, если искусственным путем воспроизвести спектр того или иного звука, в частности спектр гласной, то наше ухо получит впечатление этого звука, хотя бы его «естественный источник» отсутствовал. Особенно легко удается осуществлять такой синтез звуков (и синтез гласных) с помощью электроакустических устройств. Электрические музыкальные инструменты позволяют очень просто изменять спектр звука, т. е. менять его тембр.

Применение метода гармонического анализа к исследованию акустических явлений позволило разрешить многие теоретические и практические проблемы. Одним из трудных вопросов акустики является вопрос об особенностях восприятия человеческой речи.

Физическими характеристиками звуковых колебаний являются частота, амплитуда и начальная фаза колебаний. Для восприятия звука человеческим ухом важны только две физические характеристики - частота и амплитуда колебаний.

Но если это действительно так, то каким образом мы узнаем одни и те же гласные а, о, у и т. д. в речи разных людей? Ведь один человек говорит басом, другой - тенором, третий - сопрано; поэтому высота звука, т. е. частота звуковых колебаний, при произношении одной и той же гласной оказывается у разных людей различной. Можно пропеть на одной и той же гласной а целую октаву, изменяя частоту звуковых колебаний вдвое, и все же мы узнаем, что это а, но не о или у.

Не изменяется наше восприятие гласных и при изменении громкости звука, т. е. при изменении амплитуды колебаний. И громко и тихо произнесенное а мы уверенно отличаем от и, у, о, э.

Объяснение этой замечательной особенности человеческой речи дают результаты анализа спектра звуковых колебаний, возникающих при произнесении гласных.

Анализ спектра звуковых колебаний может быть осуществлен различными способами. Самый простой из них заключается в использовании набора акустических резонаторов, называемых резонаторами Гельмгольца.

Акустический резонатор - это полость обычно шарообразной

формы, сообщающаяся с внешней средой через небольшое отверстие. Как показал Гельмгольц, собственная частота колебаний воздуха, заключенного в такой полости, в первом приближении не зависит от формы полости и для случая круглого отверстия определяется формулой:

где - собственная частота резонатора; - скорость звука в воздухе; - диаметр отверстия; V - объем резонатора.

Если иметь набор резонаторов Гельмгольца с различными собственными частотами, то для определения спектрального состава звука от какого-нибудь источника нужно поочередно подносить разные резонаторы к уху и определять на слух наступление резонанса по усилению громкости звучания. На основании таких опытов можно утверждать, что в составе сложных акустических колебаний имеются гармонические составляющие, являющиеся собственными частотами резонаторов, в которых наблюдалось явление резонанса.

Такой способ определения спектрального состава звука слишком трудоемок и не очень надежен. Можно было бы попытаться усовершенствовать его: применить сразу весь комплект резонаторов, снабдив каждый из них микрофоном для преобразования звуковых колебаний в электрические и прибором для измерения силы тока на выходе микрофона. Для получения сведений о спектре гармонических составляющих сложных звуковых колебаний с помощью такого прибора достаточно снять показания со всех измерительных приборов на выходе.

Однако и такой способ не применяют на практике, так как разработаны более удобные и надежные способы спектрального анализа звука. Сущность наиболее распространенного из них состоит в следующем. С помощью микрофона исследуемые колебания давления воздуха звуковой частоты преобразуются в колебания электрического напряжения на выходе микрофона. Если качество микрофона достаточно высокое, то зависимость напряжения на выходе микрофона от времени выражается той же функцией, что и изменение со временем звукового давления. Тогда анализ спектра звуковых колебаний можно заменить анализом спектра электрических колебаний. Анализ же спектра электрических колебаний звуковой частоты осуществляется технически проще, и результаты измерений оказываются значительно более точными. Принцип действия соответствующего анализатора также основан на явлении резонанса, но уже не в механических системах, а в электрических цепях.

Применение метода анализа спектров к исследованию человеческой речи позволило обнаружить, что при произнесении человеком, например, гласной а на высоте тона до первой октавы

возникают звуковые колебания сложного частотного спектра. Кроме колебаний с частотой 261,6 Гц, соответствующих тону до первой октавы, в них обнаруживается ряд гармоник более высокой частоты. При изменении тона, на котором произносится гласная, в спектре звуковых колебаний происходят изменения. Падает до нуля амплитуда гармоники с частотой 261,6 Гц, и появляется гармоника, соответствующая тому тону, на котором теперь произносится гласная, но ряд других гармоник при этом не изменяет своей амплитуды. Устойчивую группу гармоник, характерную для данного звука, называют его формантой.

Если проиграть на скорости 78 об/мин грампластинку с записью исполнения какой-нибудь песни, предназначенную для проигрывания на скорости 33 об/мин, то мелодия песни останется неизменной, но звуки и слова звучат не просто более высоко, а становятся неузнаваемыми. Причина этого явления состоит в том, что изменяются частоты всех гармонических составляющих каждого звука.

Мы приходим к выводу, что мозг человека по сигналам, поступающим через нервные волокна от слухового аппарата, способен определять не только частоту и амплитуду звуковых колебаний, но и спектральный состав сложных звуковых колебаний, как бы выполняя работу анализатора спектра гармонических составляющих негармонических колебаний.

Человек способен узнавать голоса знакомых людей, отличать звуки одного тона, полученные с помощью различных музыкальных инструментов. Эта способность также основана на различии спектрального состава звуков одного основного тона от разных источников. Наличие в их спектре устойчивых групп - формант гармонических составляющих - придает звучанию каждого музыкального инструмента характерную «окраску», называемую тембром звука.

1. Приведите примеры негармонических колебаний.

2. В чем заключается существо метода гармонического анализа?

3. Каковы практические применения метода гармонического анализа?

4. Чем отличаются друг от друга различные гласные звуки?

5. Как осуществляется на практике гармонический анализ звука?

6. Что такое тембр звука?

Лучшие статьи по теме