Для школьников и родителей
  • Главная
  • Развивашки
  • Урок по астрономии что изучает астрономия. Конспект урока "Наблюдения - основа астрономии. Телескопы.". Диспуты на предложенные темы

Урок по астрономии что изучает астрономия. Конспект урока "Наблюдения - основа астрономии. Телескопы.". Диспуты на предложенные темы

Урок №2

Дата:

Класс: 10

Тема: Наблюдения - основа астрономии. Телескопы

Цель: Усвоение учащимися особенностей телескопов различных видов. Развитие представления об обсерваториях. Усвоение характеристик телескопов.

Ход урока:

I.Оргмомент. Мотивация.

II.Проверка домашнего задания.

1. Что изучает астрономия? Перечислите важнейшие особенности астрономии.

2. Как возникла наука астрономия? Охарактеризуйте основные периоды ее развития.

3. Какие объекты и их системы изучает астрономия? Перечислите их в порядке увеличения размеров

III . Изучение нового материала

Астрономические наблюдения. Основным способом исследования небесных объектов и явлений служат астрономические наблюдения. Астрономические наблюдения - это целенаправленная и активная регистрация информации о процессах и явлениях, про-

исходящих во Вселенной. Такие наблюдения выступают основным источником знаний на эмпирическом уровне. На протяжении тысячелетий астрономы изучали положение небесных объектов на звездном небе и их взаимное перемещение с течением времени. Точные измерения положений звезд, планет и других небесных тел дают материал для определения расстояний до них и их размеров, а также для изучения законов их движения. Результатами угломерных измерений пользуются в практической астрономии, небесной механике, звездной астрономии. Система горизонтальных координат. Работа по рис. 1.3. стр.11.

Для проведения астрономических наблюдений и их обработки во многих странах созданы специальные научно-исследовательские учреждения - астрономические обсерватории .

Для выполнения астрономических наблюдений и обработки полученных данных в современных обсерваториях используют наблюдательные инструменты (телескопы), светоприемную и анализирующую аппаратуру, вспомогательные приборы для наблюдений, электронно-вычислительную технику и др.

Оптические телескопы служат для собирания света исследуемых небесных тел и получения их изображения. Телескоп увеличивает угол зрения, под которым видны небесные тела, и собирает во много раз больше света, приходящего от светила, чем невооруженный глаз наблюдателя. Благодаря этому в телескоп можно рассматривать невидимые с Земли детали поверхности ближайших небесных тел, а также множество слабых звезд.

После Второй мировой войны начала бурно развиваться радиофизика (физика радиоволн). Усовершенствованные приемники, антенны и оставшиеся после войны радиолокаторы могли принимать радиоизлучение Солнца и далеких космических объектов. Так возникларадиоастрономия - одна из ветвей астрофизики. Внедрение

Конспект урока по астрономии.

Класс: 10-11

Учебник: Б. А. Воронцов-Вельяминов, Е.К. Страут

Тема урока: «Введение в астрономию»

Место и роль урока в изучаемой теме: урок-изучение нового материала

Цель: Формирование представлений о предмете «Астрономия»

Задачи: 1. Дать характеристику этапам развития астрономии.

2. Познакомиться с некоторыми разделами астрономии

3. Изучить структуру и масштабы вселенной

Планируемые образовательные результаты

Предметные: объяснять причины возникновения и развития астрономии, приводить примеры, подтверждающие данные причины; иллюстрировать примерами практическую направленность астрономии; воспроизводить сведения по истории развития астрономии, ее связях с другими науками;

Метапредметные: формулировать понятие «предмет астрономии»; доказывать самостоятельность и значимость астрономии как науки;

- Личностные: обсудить потребности человека в познании, как наиболее значимой не насыщаемой потребности, понимание различия между мифологическим и научным сознанием.

Слайд 2

1. Что изучает астрономия. Возникновение астрономии. Астрономия[греч. astron-звезда,светило, nomos -закон] - наука о строении, движении, происхождении и развитии небесных тел, их систем и всей Вселенной в целом.Вселенная- максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы.

Слайд 3

Аллегория Яна Гевелия (1611-1687, Польша), изображает музу Уранию, покровительницу астрономии, которая в руках держит Солнце и Луну, а на голове у нее сверкает корона в виде звезды. Урания окружена нимфами, изображающими пять ярких планет, слева Венеру и Меркурия (внутренние планеты), справа – Марс, Юпитер и Сатурн.

Слайд 4

Потребность в астрономических знаниях диктовалась жизненной необходимостью:

Потребность счета времени, ведение календаря. Ориентация на местности, находить дорогу по звездам, особенно мореплавателям. Любознательность – разобраться в происходящих явлениях. Забота о своей судьбе, породившая астрологию. Великолепный хвост кометы МакНота, 2007г Падение болида, 2003г

Слайд 5

Систематические астрономические наблюдения проводились тысячи лет назад

Солнечный камень древних ацтеков Солнечная обсерватория в Дели, Индия Солнечные часы в обсерватории в Джайпуре

Слайд 6

Древняя обсерватория Стоунхендж, Англия, построен в 19-15 веках до н.э.

Стоунхендж (англ- «Каменная изгородь») - внесённое в список Всемирного наследия каменное мегалитическое сооружение (кромлех) на Солсберийской равнине в графстве Уилтшир (Англия). Находится примерно в 130 км к юго-западу от Лондона.

Слайд 7

38 пар вертикальных камней, высотой не менее 7 метров и весом не менее 50 тонн каждый. Диаметр занимаемого колоссами круга составляет 100 метров.

О назначении гигантского сооружения до сих пор идут споры, наиболее популярными выглядят следующие гипотезы: 1. Место ритуальных церемоний и погребений (жертвоприношений). 2. Храм Солнца. 3. Символ власти доисторических жрецов. 4. Город Мертвых. 5. Языческий собор или священное убежище на благословенной богом земле. 6. Недостроенная АЭС (фрагмент цилиндра реакторного отделения). 7. Астрономическая обсерватория древних ученых. 8. Место посадки космических кораблей НЛО. 9. Прообраз современного компьютера. 10. Просто так, без причины.

Слайд 8

Главная ось комплекса, идущая по аллее через пяточный камень, указывает на точку восхода Солнца в день летнего солнцестояния. Восход дневного светила в этой точке происходит только в определенный день в году - 22 июня.

Слайд 9

Периоды развития астрономии: Древнейший I-й Античный мир (до Н.Э.) II-йДотелескопический (Н.Э. до 1610г) Классический(1610 - 1900) III-йТелескопический (до спектроскопии, 1610-1814гг) IV-йСпектроскопический (до фотографии, 1814-1900гг) V-йСовременный (1900-н.в) Разделы астрономии: 1. Практическая астрономия 2. Небесная механика 3. Сравнительная планетология 4. Астрофизика 5. Звездная астрономия 6. Космология 7. Космогония 2. Разделы астрономии. Связь с другими науками.

Слайд 10

Древо астрономических знаний

Слайд 11

Слайд 12

Связь астрономии с другими науками

1 - гелиобиология2 - ксенобиология3 - космическая биология и медицина4 - математическая география5 - космохимияА - сферическая астрономияБ - астрометрияВ - небесная механикаГ - астрофизикаД - космологияЕ - космогонияЖ - космофизика Физика Химия Биология География и геофизика История и обществознание Литература Философия

Слайд 13

3. Общие представления о масштабе и структуре ВселеннойВселенная- максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы. Реальный мир,вероятно,устроен так, что могут существовать другие вселенные с иными законами природы,а физические постоянные могут иметь другие значения.Вселенная - уникальная всеобъемлющая система, охватывающая весь существующий материальный мир, безграничный в пространстве и бесконечный по разнообразию форм.

1 астрономическая единица = 149, 6 млн.км ~ 150 млн.км 1пк (парсек) = 206265 а.е. = 3,26 св. лет 1 световой год (св. год) - это расстояние, которое луч света со скоростью почти 300 000 км/с пролетает за 1 год и равен 9,46 миллионам миллионов километров!

Слайд 14

Космические системы

Солнечная система - Солнце и движущиеся вокруг тела (планеты, кометы, спутники планет, астероиды). Солнце – самосветящееся тело, остальные тела, как и Земля светят отраженным светом. Возраст СС ~ 5 млрд. лет. Таких звездных систем с планетами и другими телами во Вселенной огромное количество. Нептун находится на расстоянии 30 а.е.

Слайд 15

Солнце как звезда

Вид Солнца в разных диапазонах электромагнитных волн

Слайд 16

Одним из самых примечательных объектов звездного неба является Млечный Путь-часть нашей Галактики. Древние греки называли его «молочный круг». Первые наблюдения в телескоп,проведенные Галилеем, показали, что Млечный Путь – это скопление очень далеких и слабых звезд. Видимые на небе звезды- это ничтожная доля звезд, входящих в состав галактик.

Слайд 17

Так выглядит наша Галактика сбоку

  • Слайд 18

    Так выглядит наша Галактика сверху диаметр около 30 кпк

  • Слайд 19

    Галактики- системы звезд, их скоплений и межзвездной среды. Возраст галактик 10-15 млрд. лет

    Слайд 20

    4. Астрономические наблюдения и их особенности.Наблюдения – основной источник знаний о небесных телах, процессах и явлениях происходящих во Вселенной

    Слайд 21

    Первым астрономическим инструментом можно считать гномон- вертикальный шест, закрепленный на горизонтальной площадке, позволявший определять высоту Солнца. Зная длину гномона и тени, можно определить не только высоту Солнца над горизонтом, но и направление меридиана, устанавливать дни наступления весеннего и осеннего равноденствий и зимнего и летнего солнцестояний.

    Слайд 22

    Другие древние астрономические инструменты:астролябия, армиллярная сфера, квадрант, параллактическая линейка

    Слайд 23

    Оптические телескопы

    Рефрактор (линзовый)- 1609г. Галилео Галилей в январе 1610г открыл 4 спутника Юпитера. Самый большой рефрактор в мире изготовлен Альваном Кларком (диаметр 102см), установлен в 1897г в Йерской обсерватории (США) с тех пор профессионалы не строят гигантские рефракторы.

    Слайд 24

    Рефракторы

  • Слайд 25

    Рефлектор(используется вогнутое зеркало)- изобрел Исаак Ньютон в 1667г

    Слайд 26

    Большой Канарский телескопИюль 2007 г - первый свет увидел телескоп Gran Telescopio Canarias на Канарских островах с диаметром зеркала 10,4 м, который является самым большим оптическим телескопом в мире по состоянию на 2009 год.

    Слайд 27

    Крупнейшими телескопами-рефлекторами являются два телескопа Кека, расположенные на Гавайях, обсерватория Мауна-Кеа (Калифорния, США). Keck-I и Keck-II введены в эксплуатацию в 1993 и 1996 соответственно и имеют эффективный диаметр зеркала 9,8 м. Телескопы расположены на одной платформе и могут использоваться совместно в качестве интерферометра, давая разрешение, соответствующее диаметру зеркала 85 м.

    Слайд 28

    SALT - Большой южно-африканский телескоп (англ. Southern African Large Telescope) - оптический телескоп с диаметром главного зеркала 11 метров, находящийся в Южно-африканской астрономической обсерватории, ЮАР. Это крупнейший оптический телескоп в южном полушарии. Дата открытия 2005 год

    Слайд 29

    Большой бинокулярный телескоп (англ. The Large Binocular Telescope (LBT) , 2005 г) - один из наиболее технологически передовых и обладающих наивысшим разрешением оптических телескопов в мире, расположенный на 3,3-километровой горе Грэхем в юго-восточной части штата Аризона (США). Телескоп обладает двумя зеркалами диаметром 8,4 м, разрешающая способность эквивалентна телескопу с одним зеркалом диаметром 22,8 м.

    Слайд 30

    телескопVLТ(very large telescope) Паранальская обсерватория, Чили - телескоп, созданный по соглашению восьми стран. Четыре телескопа одного типа, диаметр главного зеркала составляет 8,2 м. Свет, собираемый телескопами эквивалентен одиночному зеркалу 16 метров в диаметре.

    Слайд 31

    GEMINI North и GEMINI South Телескопы-близнецы Gemini North и Gemini South имеют зеркала диаметром 8.1м - международный проект. Они установлены в Северном и Южном полушариях Земли,чтобы охватить наблюдениями всю небесную сферу. Gemini N построен на горе Мауна Кеа (Гавайи) на высоте 4100м над уровнем моря, а Gemini S сооружен в Сьеро Пачон (Чили), 2737м.

    Слайд 32

    Крупнейший в Евразии телескоп БТА - Большой Телескоп Азимутальный - находится на территории России, в горах Северного Кавказа и имеет диаметр главного зеркала 6 м. (монолитное зеркало 42т, 600т телескоп, можно видеть звезды 24-й величины). Он работает с 1976 и длительное время был крупнейшим телескопом в мире.

    Слайд 33

    30-метровый телескоп (Thirty Meter Telescope - TMT): диаметр главного зеркала 30 м (492 сегмента, каждый размером 1,4 м.Строительство нового объекта планируется начать в 2011 году. "Тридцатиметровый телескоп" к 2018 году возведут на вершине потухшего вулкана Мауна-Кеа (Mauna Kea) на Гавайях, в непосредственной близости от которого уже работает несколько обсерваторий (Mauna Kea Observatories).

    Слайд 34

    Обсерватории– научно-исследовательские учреждения Mauna Kea на Гавайях - одно из самых прекрасных мест для наблюдения в мире. С высоты в 4200 метров телескопы могут выполнять измерения в оптическом, инфракрасном диапазоне и иметь длину волны в пол миллиметра.

    Телескопы обсерватории Мауна Кеа, Гавайи

    Слайд 35

    Зеркально-линзовый – 1930г, Барнхард Шмидт (Эстония). В 1941г Д.Д. Максутов (СССР) создал менисковый с короткой трубой. Применяется любителями – астрономами.

    Слайд 36

    Слайд 37

    Радиотелескоп - астрономический инструмент для приёма радиоизлучения небесных объектов (в Солнечной системе, Галактике и Метагалактике) и исследования его характеристик. Состоит:антенна и чувствительный приемник с усилителем. Собирает радиоизлучение, фокусирует его на детекторе, настроенном на выбранную длину волны, преобразует этот сигнал. В качестве антенны используется большая вогнутая чаша или зеркало параболической формы. преимущества: в любую погоду и время суток можно вести наблюдение объектов, недоступные для оптических телескопов.

    Слайд 38

    Радиоантенна Янского. Первым космическое радиоизлучение зарегистрировал Карл Янский в 1931 году. Его радиотелескоп представлял собой вращающуюся деревянную конструкцию, установленную на автомобильных колесах для исследования помех радиотелефонной связи на длинах волн λ = 4 000 м и λ = 14,6 м. К 1932 году стало ясно, что радиопомехи приходят из Млечного Пути, где расположен центр Галактики. А в 1942 было открыто радиоизлучение Солнца

    Слайд 39

    Аресибо (остров Пуэрто –Рико, 305м-забетонированная чаша потухшего вулкана, введен в 1963г). Самая большая радиоантенна в мире

    Слайд 40

    Радиотелескоп РАТАН- 600, Россия(Сев.Кавказ) , вступил в строй в 1967г, состоит из 895 отдельных зеркал размером 2,1х7,4м и имеет замкнутое кольцо диаметром 588м

    Слайд 41

    15-метровый телескоп Европейской Южной обсерватории

    Слайд 42

    Система радиотелескопов VLA Very Large Array в Нью-Мексико (США) состоит из 27 тарелок, каждая диаметром 25 метров. Налаживают связь между радиотелескопами, находящимися в разных странах и даже на разных континентах. Такие системы получили название радиоинтерферометров со сверхдлинной базой (РСДБ). Дают максимально возможное угловое разрешение, в несколько тысяч раз лучшее, чем у любого оптического телескопа.

    Слайд 43

    LOFAR - первый цифровой радиотелескоп, который не нуждается ни в подвижных частях, ни в моторах. Открыт в 2010г. июнь.Много простых антенн, гигантские объемы данных и мощности компьютеров.LOFAR представляет собой гигантский массив, состоящий из 25 тысяч небольших антенн (от 50 см до 2 м в поперечнике). Диаметр LOFAR – примерно 1000 км. Антенны массива расположены на территории нескольких стран: Германии, Франции, Великобритании, Швеции.

    Слайд 44

    Космические телескопы

    Космический телескоп «Хаббл» (Hubble Space Telescope, HST) - это целая обсерватория на околоземной орбите, общее детище NASA и Европейского космического агентства. Работает с 1990 г. Самый крупный оптический телескоп, который ведет наблюдения в инфракрасном, ультрафиолетовом диапазоне. За 15 лет работы «Хаббл» получил 700 000 снимков 22 000 всевозможных небесных объектов - звезд, туманностей, галактик, планет. Длина - 15,1 м, вес 11,6 тонн, зеркало 2,4 м

    Слайд 45

    Рентгеновский телескоп «Чандра» (Chandra X-ray Observatory)вышел в космос 23 июля 1999 года. Его задача - наблюдать рентгеновские лучи, исходящие из областей, где есть очень высокая энергия, например, в областях звездных взрывов

    Слайд 46

    Телескоп «Спитцер» (Spitzer) - был запущен НАСА 25 августа 2003. Он наблюдает космос в инфракрасном диапазоне. В этом диапазоне находится максимум излучения слабосветящегося вещества Вселенной - тусклых остывших звезд, гигантских молекулярных облаков.

    Слайд 47

    Телескоп «Кеплер» запустили 6 марта 2009 года. Это первый телескоп специально предназначенный для поиска экзопланет. Он будет наблюдать изменение яркости более чем 100 000 звезд в течение 3,5 лет. За это время он должен определить, сколько планет, подобных Земле, находится на пригодном для развития жизни удалении от своих звезд, составить описание этих планет и формы их орбит, изучить свойства звезд и многое другое. Когда «Хаббл» «уйдет на пенсию», его место должен занять космический телескоп имени Джеймса Вебба (James Webb Space Telescope, JWST). У него будет огромное зеркало 6,5 метров в диаметре. Его задача - найти свет первых звезд и галактик, которые появились сразу после Большого взрыва. Его запуск запланирован на 2013 год. И кто знает, что он увидит в небе и как изменится наша жизнь.

    Изучив этот параграф, мы узнаем:
    • о далеких космических светилах и представим себе огромные масштабы Вселенной, в которой мы живем;
    • где находится наша планета во Вселенной и определим наш космический адрес.

    Предмет астрономии

    Название астрономия заимствовано из греческого языка (astron - звезда, nomos - закон), то есть это наука, изучающая законы звезд. Сейчас известно, что во Вселенной кроме звезд (рис. 1.1) существует много других космических тел и их комплексов - планет, астероидов, комет, галактик, туманностей. Поэтому астрономы изучают все объекты, находящиеся за пределами Земли, и их взаимодействие между собой. Слово космос в переводе с греческого означает порядок, в отличие от хаоса, где царит беспорядок. То есть древнегреческие ученые понимали, что во Вселенной действуют законы, поэтому на небе существует определенный порядок. В наше время под словом космос мы представляем себе Вселенную. В современной астрономии используются различные методы исследования Вселенной. Астрономы не только собирают информацию о далеких мирах, изучая излучение, поступающее из космоса на поверхность Земли, но и проводят эксперименты в ближнем и дальнем космическом пространстве.

    Рис. 1.1. Звезда - массивное горячее космическое тело, которое излучает свет и имеет внутри источник энергии. (Фотография Солнца)

    Краткая история астрономии

    Издавна небо поражало воображение людей своей загадочностью, но много веков оставалось для них недоступным и потому священным. Фантазия людей населила небо богами, управляющими миром и решающими судьбу каждого человека. Ночью призрачное сияние звезд завораживало людей, поэтому древние астрономы объединили отдельные звезды в фигуры людей и животных - так появились названия созвездий. Затем были замечены светила, движущиеся среди звезд,- их назвали планетами (с греч.- блуждающая; рис. 1.2).


    Рис. 1.2. Планета - холодное по сравнению со звездой космическое тело, которое обращается вокруг звезды и светится ее отраженными лучами

    Первые попытки объяснить таинственные небесные явления были предприняты в Древнем Египте более 4000 лет назад и в Древней Греции еще до начала нашей эры. Египетские жрецы составили первые карты звездного неба (рис. 1.3), дали названия планетам.


    Рис. 1.3. Часть древней карты звездного неба. Принцессу Андромеду принесли в жертву чудовищу Киту. Спас красавицу Персей, отрубив голову Медузе Горгоне, от взгляда которой все аменели

    Великий древнегреческий философ и математик Пифагор в VI в. до н. э. выдвинул идею, что Земля имеет форму шара и «висит» в пространстве, ни на что не опираясь. Астроном Гиппарх во II в. до н. э. определил расстояние от Земли до Луны и открыл явление прецессии оси обращения Земли.


    Рис. 1.4. Птолемей (90-160)

    Древнегреческий философ Клавдий Птолемей (рис. 1.4) во II в. н. э. создал геоцентрическую систему мира, в которой Земля находится в центре. Землю в пространстве окружают 8 сфер, на которых расположены Луна, Солнце и пять известных в то время планет: Меркурий, Венеpa, Марс, Юпитер и Сатурн (рис. 1.5).


    Рис. 1.5. Геоцентрическая система мира: в центре Земля, а все остальные небесные тела обращаются вокруг нее. (Древняя гравюра XVII в.)

    На 8-й сфере находятся звезды, которые соединены между собой и обращаются вокруг Земли как единое целое. В XVI в. польский астроном Николай Коперник (рис. 1.6) предложил гелиоцентрическую систему мира, в которой в центре находится Солнце, а планета Земля и другие планеты обращаются вокруг него по круговым орбитам (рис. 1.7).


    Рис. 1.6. Н. Коперник (1473-1543)

    Гениальность открытия Коперником гелиоцентрической системы мира состояла в том, что он, разрушив границу между небом и Землей, выдвинул гипотезу, что во Вселенной действуют одни и те же законы, справедливые как на Земле, так и в космосе.


    Рис. 1.7. Гелиоцентрическая система мира: в центре находится Солнце. Земля вместе с планетами обращается вокруг него. (Гравюра)

    В 1609 г. итальянский физик Галилео Галилей (рис. 1.8) впервые применил телескоп для наблюдения за небесными светилами, открыл спутники Юпитера и увидел звезды Млечного Пути.


    Рис. 1.8. Г. Галилей (1564-1642)

    XVIII в. в истории астрономии связан с именем английского ученого Исаака Ньютона (рис. 1.9), который открыл закон всемирного тяготения. Заслуга Ньютона заключается в том, что он доказал универсальность силы гравитации, то есть та же сила, которая действует на яблоко во время его падения на Землю, притягивает также Луну, обращающуюся вокруг Земли. Сила притяжения управляет движением звезд и галактик, а также влияет на эволюцию всей Вселенной.


    Рис. 1.9. И. Ньютон (1643-1727)

    В XIX в. начался новый этап в изучении космоса, когда немецкий физик Йозеф Фраунгофер в 1814 г. открыл линии поглощения в спектре Солнца - фраунгоферовы линии (рис. 1.10), затем линии поглощения были обнаружены в спектрах других звезд. С помощью спектров астрономы определяют химический состав, температуру и даже скорость движения космических тел.


    Рис. 1.10. Спектр Солнца. Темные линии поглощения образуются в атмосферах Земли и Солнца

    В XX в. создание выдающимся немецким физиком Альбертом Эйнштейном общей теории относительности помогло астрономам понять странное красное смещение линий поглощения в спектрах далеких галактик, которое было открыто американским астрономом Эдвином Хабблом в 1929 г. Хаббл доказал, что галактики разлетаются, и позже ученые создали теорию эволюции Вселенной от ее зарождения до современности. Это послужило толчком к созданию новой науки - космологии.

    4 октября 1957 г. началась эра космонавтики. В этот день в Советском Союзе был запущен в космос первый в мире искусственный спутник Земли (рис. 1.11), в создании которого принимали участие и украинские ученые. Сегодня в космосе летают сотни автоматических станций, которые исследуют не только околоземное пространство, но и другие планеты Солнечной системы.


    Рис. 1.11. Первый в мире искусственный спутник Земли (СССР)

    Наш космический адрес

    Мы живем на Земле - одной из планет Солнечной системы. Эти планеты движутся по своим орбитам вокруг Солнца. Большинство планет (кроме Венеры и Меркурия) имеют спутники, которые обращаются вокруг своей планеты. В Солнечную систему кроме Солнца и планет со спутниками входят также сотни тысяч астероидов, или малых планет, миллионы кометных ядер и метеорное вещество. Относительно Солнца планеты располагаются в следующем порядке: ближайшая - Меркурий, за ним - Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун (рис. 1.12).


    Рис. 1.12. Относительные размеры Солнца и планет Солнечной системы. Средний радиус Земли 6370 км

    За Нептуном вокруг Солнца обращаются еще тысячи малых планет, которые почти не освещаются его лучами.

    Расстояния в космическом пространстве настолько велики, что измерять их в обычных для нас километрах неудобно, поэтому астрономы выбрали единицами измерения астрономическую единицу и световой год .

    Вне Солнечной системы, на расстоянии более чем 100000 а. е., начинается зона притяжения других звезд. Невооруженным глазом на небе можно увидеть около 6000 звезд, которые образуют 88 созвездий. На самом деле звезд намного больше, но от далеких светил поступает так мало света, что их можно наблюдать только в телескоп. Большие скопления звезд, удерживающиеся силой тяжести, называют галактиками. Во Вселенной находятся миллиарды галактик, среди них есть и наша Галактика (пишется с большой буквы), которую называют Чумацкий Шлях или Млечный Путь. На ночном небе мы видим ее как серебристую полосу (рис. 1.13). Наша Галактика (с греч.- Млечный Путь) - это огромная система, в которой обращаются вокруг центра 400 млрд звезд. Горячие звезды расположены в виде диска со спиральными рукавами.


    Рис. 1.13. Галактика Млечный Путь. Диаметр основной части диска - 100000 св. лет, расстояние от Солнца до центра Галактики - 25 000 св. лет

    Из других галактик, видимых невооруженным глазом, выделяется Туманность Андромеды. Эта звездная система по размерам и форме подобна нашей Галактике, и свет от нее долетает до Земли за 2,3 млн лет, то есть расстояние до нее - 2,3 млн св. лет. Галактики расположены в скоплениях и формируют ячеистую структуру Вселенной. Н

    аиболее удаленные космические объекты, которые еще можно увидеть в современные телескопы,- квазары (см. § 15). Они находятся на расстоянии 10 млрд св. лет от Земли.

    Если в будущем земляне захотят обмениваться информацией с другими мирами, то наш космический адрес можно записать так: планета Земля, Солнечная система, Галактика, Вселенная (рис. 1.14).


    Рис. 1.14. Наш космический адрес

    Для любознательных

      Во Вселенной зарегистрировано около 10 млрд галактик. Если в каждой галактике насчитывается в среднем 1011 звезд, то общее количество звезд во Вселенной достигает фантастической цифры 1021. Это астрономическое число с 21 нулем представить себе трудно, поэтому можно посоветовать следующее сравнение. Если разделить все звезды во Вселенной на количество людей на Земле, то каждый из нас был бы обладателем одной галактики, то есть примерно 200 млрд звезд.

    Основные разделы астрономии

    Современная астрономия - чрезвычайно разветвленная наука, развитие которой напрямую связано с научно-техническим прогрессом человечества. Астрономия делится на отдельные направления, в которых используются присущие только им методы и средства исследования.

    Космология - раздел астрономии, изучающий строение и эволюцию Вселенной как единого целого. Возможно, в будущем космология объединит все естественные науки: физику, математику, химию, биологию, философию - для того чтобы дать ответ на основные проблемы нашего бытия (см. § 15, 16, 17):

    • Как возник мир, в котором мы живем, и почему он является таким, каким мы его сейчас наблюдаем?
    • Как возникла жизнь на Земле и существует ли жизнь во Вселенной?
    • Что ожидает нашу Вселенную в будущем?

    Для любознательных

      Иногда астрономию отождествляют с астрологией, так как их названия похожи. На самом деле между астрономией и астрологией есть существенное отличие: астрономия - это наука, которая изучает происхождение и эволюцию космических тел, а астрология не имеет ничего общего с наукой, поскольку предполагает, что с помощью звезд можно предсказать будущее. Астрологи рисуют различные схемы расположения звезд и планет, составляют гороскопы (с греч.- заглянуть в будущее), при помощи которых предсказывают судьбу человека.

    Выводы

    Астрономия - это наука, изучающая различные космические тела и их системы, а также процессы, происходящие при взаимодействии этих тел между собой. В течение последнего тысячелетия представления людей о Вселенной существенно изменились - от геоцентрической системы мира Птолемея с хрустальными сферами вокруг Земли к современной величественной картине безграничного космоса. Астрономия тесно связана с другими естественными науками - физикой, химией, математикой, биологией, философией, потому что на Земле и в космосе действуют одни и те же законы природы. В нашей Вселенной нет ничего вечного - образуются и взрываются звезды и планеты, рождаются и гибнут цивилизации... Вечным остается только один вопрос: «Почему существует Вселенная и почему в этом странном мире живем мы?»

    Тесты

    1. Какое тело находится в центре геоцентрической системы мира?
          А. Солнце.
          Б. Юпитер.
          В. Сатурн.
          Г. Земля.
          Д. Венера.
    2. Какую планету открыл Коперник?
          А. Марс.
          Б. Сатурн.
          В. Уран.
          Г. Землю.
          Д. Юпитер.
    3. Что измеряется световыми годами?
          А. Время.
          Б. Расстояние до планет.
          В. Период обращения.
          Г. Расстояние до звезд.
          Д. Расстояние до Земли.
    4. Как переводится с греческого языка слово планета?
          А. Волосатая звезда.
          Б. Хвостатая звезда.
          В. Блуждающая звезда.
          Г. Туманность.
          Д. Холодное тело.
    5. Какую структуру имеет наша Галактика?
          А. Эллиптическую.
          Б. Спиральную.
          В. Неправильную.
          Г. Шаровидную.
          Д. Цилиндрическую.
    6. Какая разница между геоцентрической и гелиоцентрической системами мира?
    7. В какой последовательности относительно Солнца расположены планеты Солнечной системы?
    8. Могут ли существовать тела за пределами орбиты Нептуна?
    9. Что измеряется астрономическими единицами?
    10. Рассчитайте величину (до третьего знака) 1 св. года в километрах.
    11. Вычислите, за какое время свет долетает от Солнца до Земли; Нептуна; границ Солнечной системы. Скорость света считайте равной 300000 км/с.

    Диспуты на предложенные темы

    1. Что такое астрология? По вашему мнению, можно ли считать астрологию наукой?

    Задания для наблюдений

    1. Самостоятельно найдите на небе яркие звезды, которые обозначены на карте звездного неба. Зарисуйте яркие звезды, расположенные у вас над головой. Сравните ваши рисунки с картой звездного неба. К каким созвездиям относятся эти звезды?
    2. Найдите среди ярких звезд такую, которая не обозначена на звездной карте. Это может быть какая-то планета или, возможно, вы открыли новую звезду!

    Ключевые понятия и термины:

    Астрономическая единица, астрофизика, Галактика, гелиоцентрическая система мира, геоцентрическая система мира, звезда, небесная механика, планета, световой год.

    Цели урока: формировать понятие «предмет астрономии»; доказать самостоятель­ность и значимость астрономии как науки; дать общие сведения о структуре и составе Солнечной системы. объяснить причины возникнове­ния и развития астрономии, привести примеры, подтверждающие данные причины; иллюстриро­вать примерами практическую направленность ас­трономии; воспроизвести сведения по истории раз­вития астрономии, ее связях с другими науками.

    Ход урока

      Организационный момент

      Вводная беседа (2 мин)

    Требования: учебник и тетрадь

      Новый материал

    Астрономия - древнейшая наука, истоки относятся к каменному веку(VI - III тысячелетия до н.э.) [греч. astron - звезда, светило, nomos -закон] - наука о Вселенной (о природе ) изучает движение, строени е , происхождени е и развити е небесных тел и их систем .

    Системы: - все тела во Вселенной образуют системы различной сложности.

    Астрономия исследует также фундаментальные свойства окружающей нас Вселенной.

    Как наука, астрономия основывается прежде всего на наблюдениях. В отличие от физиков астрономы лишены возможности ставить эксперименты. Практически всю информацию о небесных телах приносит нам электромагнитное излучение. Только в последние сорок лет отдельные миры стали изучать непосредственно: зондировать атмосферы планет, изучать лунный и марсианский грунт.


    Самостоятельная работа – стр.6-8 – составить ОК «Структура Вселенной»

    Астрономическая единица используется при изучении Солнечной системы. Это размер большой полуоси орбиты Земли: 1 а. е. = 149 миллионов километров . Более крупные единицы длины – световой год и парсек, а также их производные (килопарсек, мегапарсек) – нужны в звездной астрономии и космологии. Световой год – расстояние, которое проходит луч света в вакууме за один земной год. Он равен примерно 9,5∙10 15 м .

    Исторически связан с измерением расстояний до звезд по их параллаксу и составляет 1 пк = 3,263 светового года =206 265 а. е.=3,086∙10 16 м.

    Астрономия тесно связана с другими науками, прежде всего с физикой и математикой, методы которых широко применяются в ней. Но и астрономия является незаменимым полигоном, на котором проходят испытания многие физические теории. Космос – единственное место, где вещество существует при температурах в сотни миллионов градусов и почти при абсолютном нуле, в пустоте вакуума и в нейтронных звездах. В последнее время достижения астрономии стали использоваться в геологии и биологии, географии и истории.

    История астрономии - одна из самых увлекательных и древнейших наук Потребность в астрономических знаниях диктовалась жизненной необходимостью:

    1. Счета времени (календарь).

    2. Находить дорогу по звездам, особенно мореплавателям

    3. Любознательность - разобраться в происходящих явлениях и поставить их себе на службу.

    4. Забота о своей судьбе, народившая астрологию.

    Этапы развития астрономии

    I-й Античный мир (до н. э)

    II-ой Дотелескопический (наша эра до 1610г)

    III-ий Телескопический (1610-1814гг)

    IV-ый Спектроскопия (1814-1900гг)

    V-ый Современный (1900 - наст.время)

    Связь c другими предметами.

    Основные разделы астрономии:

    Связь астрономии с другими науками

      сельскохозяйственные потребности (потреб­ность в отсчете времени - сутки, месяцы, годы. На­пример, в Древнем Египте определяли время посева и уборки урожая по появлению перед восходом солн­ца из-за края горизонта яркой звезды Сотис - пред­вестника разлива Нила);

      потребности в расширении торговли, в том числе морской (мореплавание, поиск торговых пу­тей, навигация. Так, финикийские мореплаватели ориентировались по Полярной звезде, которую гре­ки так и называли - Финикийская звезда);

      эстетические и познавательные потребности, потребности в целостном мировоззрении (человек стремился объяснить периодичность природных яв­лений и процессов, возникновение окружающего мира. Зарождение астрономии в астрологических идеях свойственно мифологическому мировоззре­нию древних цивилизаций. Мифологическое миро­воззрение - система взглядов на объективный мир и место в нем человека, которая основана не на тео­ретических доводах и рассуждениях, а на художест­венно-эмоциональном переживании мира, общест­венных иллюзиях, рожденных восприятием людьми социальных и природных процессов и своей роли в них).

    Выявление последней из указанных потребностей логично переводит к рассмотрению ряда этапов в развитии астрономии - от первых «следов» доисто­рической астрономии через наблюдательную астро­номию Древнего мира и средневекового Востока к телескопической астрономии Галилея, небесной ме­ханике Кеплера и Ньютона.

    В ходе беседы подводим учащихся к пониманию роли космической астрономии современности и ответственности чело­века в сохранении уникальности окружающего ми­ра. Итогом обсуждения этапов в развитии астроно­мии является составление схемы, отображающей современные представления о структуре Вселенной.

    При раскрытии связи астрономии с другими нау­ками важно проанализировать взаимопроникнове­ние и взаимовлияние научных областей:

      математика (использование приемов прибли­женных вычислений, замена тригонометрических функций малых углов значениями самих углов, вы­раженными в радианной мере, логарифмирование и т. д.);

      физика (движение в гравитационном и магнит­ном полях, описание состояния вещества; процессы излучения; индукционные токи в плазме, образую­щей космические объекты);

      химия (открытие новых химических элемен­тов в атмосфере звезд, становление спектральных методов; химические свойства газов, составляющих небесные тела; открытие в межзвездном веществе молекул, содержащих до девяти атомов, существо­вание сложных органических соединений метилаце- тилена и формамида и т. д.);

      биология (гипотезы происхождения жизни, приспособляемость и эволюция живых организмов; загрязнение окружающего космического простран­ства веществом и излучением);

      география (природа облаков на Земле и других планетах; приливы в океане, атмосфере и твердой коре Земли; испарение воды с поверхности океанов под действием излучения Солнца; неравномерное нагревание Солнцем различных частей земной по­верхности, создающее циркуляцию атмосферных потоков);

      литература (древние мифы и легенды как лите­ратурные произведения; научно-фантастическая ли­тература).

    В настоящее время космические исследования решаются с помощью технических средств, с помощью компьютеров можно управлять телескопами, исследовать процессы эволюции планет, звёзд и галактик.

    Развитие ракетной техники позволило человечеству выйти в космическое пространство. Результаты исследования тел Солнечной системы позволяют лучше понять глобальные, эволюционные процессы происходящие на земле.

    Вступив в космическую эру своего существования и готовясь к полетам на другие планеты, человечество не вправе забывать о Земле и должно в полной мере осознавать необходимость сохранения ее уникальной природы.

    Домашнее задание. § 1. С. 3-7, Представить графически (в виде схемы) взаимосвязь астрономии с другими науками, подчеркивая самостоятельность астроно­мии как науки и уникальность ее предмета.

    Темы проектов

      Древнейшие культовые обсерватории доисто­рической астрономии.

      Прогресс наблюдательной и измерительной ас­трономии на основе геометрии и сферической триго­нометрии в эпоху эллинизма.

      Зарождение наблюдательной астрономии в Египте, Китае, Индии, Древнем Вавилоне, Древней / flash / SHkala _ masshta - bov _ Vselennoy _ v .2. swf - Оценка соотношения раз­меров различных объектов.

  • Лучшие статьи по теме