Для школьников и родителей
  • Главная
  • Спорт
  • Уравнение линии на плоскости. Лекция линии на плоскости и их уравнения Понятие линии на плоскости

Уравнение линии на плоскости. Лекция линии на плоскости и их уравнения Понятие линии на плоскости

Определение . Уравнением линии на плоскости (относительно выбранной системы координат) называется такое уравнение с двумя переменными

x , y любой точки данной линии и не удовлетворяют координаты ни одной точки, не лежащей на этой линии.

Здесь F(x, y) x и y .

Уравнение поверхности

Определение . Уравнением поверхности (в фиксированной системе координат) называется такое уравнение с тремя переменными

которому удовлетворяют координаты x , y , z любой точки данной поверхности и только они.

Здесь F(x, y) - некоторая зависимость между x , y и z .

Уравнение линии в пространстве

Линию в пространстве можно рассматривать как пересечение двух поверхностей, поэтому она определяется двумя уравнениями. Пусть l - линия, по которой пересекаются поверхности, определяемые уравнениями F 1 (x, y, z)=0 и F 2 (x, y, z)=0 , то есть множество общих точек этих поверхностей, тогда координаты любой точки линии l одновременно удовлетворяют обоим уравнениям

Эти уравнения и являются уравнениями указанной линии.

Например, уравнения

определяют окружность радиуса R=2 , лежащую в плоскости Oxy . Полярные координаты

Зафиксируем на плоскости точку O и назовем ее полюсом (Рис. 1(a)). Луч [OP ), исходящий из полюса, назовем полярной осью . Выберем масштаб для измерения длин отрезков и условимся, что поворот вокруг точки O против часовой стрелки будем считать положительным.


Рис. 1

Рассмотрим любую точку M на заданной плоскости, обозначим через ρ ее расстояние до полюса и назовем полярным радиусом . Угол, на который нужно повернуть полярную ось [OP ), чтобы она совпадала с [OM ) обозначим через φ и назовем полярным углом .

Определение . Полярными координатами точки M называются ее полярный радиус ρ и полярный угол φ .

Обозначение : M(ρ, φ) .

Любой точке плоскости соответствует определенное значение ρ≥0 . Значение φ для точек, отличных от точки O , определено с точностью до слагаемого 2kπ , k∈Z . Для полюса ρ=0 , а φ не определено. Чтобы каждая точка плоскости получила вполне определенные значения полярных координат, достаточно считать, что 0≤φ<2π , а в полюсе φ=0 . Указанные значения φ называются главными .

Рассмотрим декартову прямоугольную систему координат: полюс совпадает с началом, а полярная ось - с положительной полуосью Ox . Декартовы координаты точки M(x, y) , полярные координаты точки M(ρ, φ) .

Связь между прямоугольными декартовыми координатами точки и ее полярными координатами:

Цилиндрические и сферические координаты

В некоторой плоскости Π фиксируем точку O и исходящий из нее луч [OP ) (Рис. 1(b)). Через точку O поведем прямую перпендикулярную плоскости Π и укажем на ней положительное направление; полученную ось обозначим Oz . Выберем масштаб для измерения длин. Пусть M N - ее проекция на плоскость Π , M z - проекция на Oz . Обозначим через ρ и φ полярные координаты точки N в плоскости Π относительно полюса O и полярной оси OP .

Определение . Цилиндрическими координатами точки M называются числа ρ , φ , z , где ρ , φ - полярные координаты точки N (ρ≥0 , 0≤φ≤2π ), а z=OM z - величина отрезка оси Oz .

Запись M(ρ, φ, z) означает, что точка M имеет цилиндрические координаты ρ , φ , z . Наименование «цилиндрические координаты» объясняется тем, что координатная поверхность ρ=const является цилиндром.

Если выбрать систему прямоугольных декартовых координат, то декартовы координаты x , y , z точки M будут связаны с ее цилиндрическими координатами ρ , phi , z формулами

Выберем масштаб для измерения длин отрезков, зафиксируем плоскость Π с точкой O и полуосью Ox , ось Oz , перпендикулярную плоскости Π (Рис. 1(c)). Пусть M - произвольная точка пространства, N - ее проекция на плоскость Π , r - расстояние точки M до начала координат, θ - угол, образуемый отрезком с осью Oz , phi - угол, на который нужно повернуть ось Ox против часовой стрелки, чтобы она совпала с лучом ON . θ называется широтой , φ - долготой .

Определение . Сферическими координатами точки M называются числа r , θ , φ , определенные выше.

Обозначение : M(r, θ, φ) .

Наименование «сферические координаты» связано с тем, что координатная поверхность r=const является сферой.

Для того, чтобы соответствие между точками пространства и тройками сферических координат (r, θ, φ ) было взаимно однозначным считают, что

Если выбрать оси прямоугольной декартовой системы координат как на рисунке, то декартовы координаты x , y , z точки M связаны с ее сферическими координатами r , θ , φ формулами

Преобразования прямоугольных координат на плоскости

а) Перенос начала или параллельный перенос .

Это означает, что при переходе от системы координат Oxy (старая) к системе координат O 1 x′y′ (новая) направление осей координат остается прежним, а за новое начало координат принята точка O 1 (a, b) , старые координаты которой x=a , y=b . Относительно таких систем говорят, что одна получена из другой путем параллельного переноса.

Связь между старыми и новыми координатами некоторой точки M плоскости определяется следующими формулами:

  • старые через новые координаты: x=x′+a , y=y′+b
  • новые через старые координаты: x′=x-a , y′=y-b
б) Поворот координатных осей .

При этом новая сиuтема Ox′y′ получается путем поворота старой Oxy на угол α вокруг точки O против часовой стрелки. С каждой из этих координат свяжем полярную систему координат, тогда

Вспоминаем формулы, выражающие координаты точки в декартовой системе через координаты точки в полярной системе

Теперь выражаем старые декартовы прямоугольные координаты x , y точки M через ее новые координаты x′ , y′ :

Следовательно, старые через новые координаты выражаются следующим образом:

Для того, чтобы выразить x′ , y′ через x , y можно поступить следующим образом. Считаем систему Ox′y′ старой, тогда переход к новой системе Oxy совершается поворотом на угол (), поэтому в формулах достаточно поменять местами x→x′ , y→y′ , записать () вместо α , тогда имеем формулы, выражающие новые координаты через старые.

Основные понятия

Линия на плоскости часто задается как множество точек , обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние R от некоторой фиксированной точки О (центра окружности).

Введение на плоскости системы координат позволяет определять положение точки плоскости заданием двух чисел - ее координат, а положение линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).

Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(х; у) = 0 с двумя переменными, которому удовлетворяют координаты х и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Переменные х и у в уравнении линии называются текущими координатами точек линии .

Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.

Так, для того чтобы установить лежит ли точка А(х о; у о) на данной линии, достаточно проверить (не прибегая к геометрическим построениям), удовлетворяют ли координаты точки А уравнению этой линии в выбранной системе координат.

Пример 10.1 . Лежат ли точки К(-2;1) и Е(1;1) на линии 2х + у +3 = О?

Решение: Подставив в уравнение вместо х и у координаты точки К, получим 2. (-2) + 1 +3 = 0. Следовательно, точка К лежит на данной линии. Точка Е не лежит на данной линии, т. к.

2·1+1+3≠0

Задача о нахождении точек пересечения двух линий, заданных уравнениями F 1 (х;у) = 0 и F 2 (х;у)=0, сводится к отысканию точек, координаты которых удовлетворяют уравнениям обеих линий, т. е. сводится к решению системы двух уравнений с двумя неизвестными:

F 1 (х;у) = 0

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогичным образом вводится понятие уравнения линии в полярной системе координат.

Уравнение F(r,φ) = 0 называется уравнением данной линии в полярной системе координат , если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению.

Линию на плоскости можно задать при помощи двух уравнений:

где х и у - координаты произвольной точки М(х; у), лежащей на данной линии, t - переменная, называемая параметром; параметр определяет положение точки (х; у) на плоскости.

Например, если х = + 1, у = t 2 , то значению параметра t 2 соответствует на плоскости точка (3; 4),

т.к. х = 2 + 1 = 3, у = 2 2 = 4.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим, а уравнения (10.1) - параметрическими уравнениями линии.

Линию на плоскости можно задать векторным уравнением , где t - скалярный переменный параметр. Каждому значению t 0 соответствует определенный вектор плоскости. При изменении параметра t конец вектора ) опишет некоторую линию

Векторому уравнению линии в системе координат Оху соответствуют два скалярных уравнения (10.1), т. е. уравнения проекций на оси координат векторного уравнения линии есть ее параметрические уравнения.

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , а линия - траекторией точки, параметр t при этом есть время .

Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(х;у) = 0.

Всякому уравнению вида F(х;у) = 0соответствует некоторая линия, свойства которой определяются данным уравнением (могут быть и исключения).

Пусть на плоскости  задана декартова прямоугольная система координат Оху и некоторая линия L.

Определение . Уравнение F(x;y)=0 (1) называется уравнением линии L (относительно заданной системы координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты х и у ни одной точки, не лежащей на линии L.

Т.о. линией на плоскости называется геометрическое место точек {M(x;y)}, координаты которых удовлетворяют уравнению (1).

Уравнение (1) определяет линию L.

Пример. Уравнение окружности.

Окружность – множество точек, равноудаленных от заданной точки М 0 (х 0 ,у 0).

Точка М 0 (х 0 ,у 0) – центр окружности .

Для любой точки М(х;у), лежащей на окружности, расстояние ММ 0 =R (R=const)

ММ 0 ==R

(х-х 0 ) 2 +(у-у 0 ) 2 =R 2 –(2) уравнение окружности радиуса R с центром в точке М 0 (х 0 ,у 0).

Параметрическое уравнение линии.

Пусть координаты х и у точек линии L выражаются при помощи параметра t:

(3) – параметрическое уравнение линии в ДСК

где функции (t) и (t) непрерывны по параметру t (в некоторой области изменения этого параметра).

Исключая из уравнения (3) параметр t, получим уравнение (1).

Рассмотрим линию L как путь, пройденный материальной точкой, непрерывно движущейся по определенному закону. Пусть переменная t представляет собой время, отсчитываемое от некоторого начального момента. Тогда задание закона движения представляет собой задание координат х и у движущейся точки как некоторых непрерывных функций х=(t) и у=(t) времени t.

Пример . Выведем параметрическое уравнение окружности радиуса r>0 с центром в начале координат. Пусть М(х,у) – произвольная точка этой окружности, а t – угол между радиус-вектором и осью Ох, отсчитываемый против часовой стрелки.

Тогда x=r cos x y=r sin t. (4)

Уравнения (4) представляют собой параметрические уравнения рассматриваемой окружности. Параметр t может принимать любые значения, но для того, чтобы точка М(х,у) один раз обошла окружность, область изменения параметра ограничивается полусегментом 0t2.

Возведя в квадрат и сложив уравнения (4), получим общее уравнение окружности (2).

2. Полярная система координат (пск).

Выберем на плоскости ось L (полярная ось ) и определим точку этой оси О (полюс ). Любая точка плоскости однозначно задается полярными координатами ρ и φ, где

ρ – полярный радиус , равный расстоянию от точки М до полюса О (ρ≥0);

φ –угол между направлением вектора ОМ и осью L (полярный угол ). М(ρ; φ)

Уравнение линии в ПСК может быть записано:

ρ=f(φ) (5) явное уравнение линии в ПСК

F=(ρ; φ) (6) неявное уравнение линии в ПСК

Связь между декартовыми и полярными координатами точки.

(х;у) (ρ; φ) Из треугольника ОМА:

tg φ=(восстановление угла φ по известному тангенсу производится с учетом того, в каком квадранте находится точка М).(ρ; φ)(х;у). х=ρcos φ, y= ρsin φ

Пример . Найти полярные координаты точек М(3;4) и Р(1;-1).

Для М:=5, φ=arctg (4/3). Для Р: ρ=; φ=Π+arctg(-1)=3Π/4.

Классификация плоских линий.

Определение 1. Линия называется алгебраической, если в некоторой декартовой прямоугольной системе координат, если она определяется уравнением F(x;y)=0 (1), в котором функция F(x;y) представляет собой алгебраический многочлен.

Определение 2. Всякая не алгебраическая линия называется трансцендентной .

Определение 3 . Алгебраическая линия называется линией порядка n , если в некоторой декартовой прямоугольной системе координат эта линия определяется уравнением (1), в котором функция F(x;y) представляет собой алгебраический многочлен n-й степени.

Т.о., линией n-го порядка называется линия, определяемая в некоторой декартовой прямоугольной системе алгебраическим уравнением степени n с двумя неизвестными.

Установлению корректности определений 1,2,3 способствует следующая теорема.

Теорема (док-во на с.107). Если линия в некоторой декартовой прямоугольной системе координат определяется алгебраическим уравнением степени n, то эта линия и в любой другой декартовой прямоугольной системе координат определяется алгебраическим уравнением той же степени n.

В прошлом материале мы рассмотрели основные моменты, касающиеся темы прямой на плоскости. Теперь же перейдем к изучению уравнения прямой: рассмотрим, какое уравнение может называться уравнением прямой, а также то, какой вид имеет уравнение прямой на плоскости.

Определение уравнения прямой на плоскости

Допустим, что есть прямая линия, которая задана в прямоугольной декартовой системе координат O х у.

Определение 1

Прямая линия – это геометрическая фигура, которая состоит из точек. Каждая точка имеет свои координаты по осям абсцисс и ординат. Уравнение, которое описывает зависимость координат каждой точки прямой в декартовой системе O x y , называется уравнением прямой на плоскости.

Фактически, уравнение прямой на плоскости – это уравнение с двумя переменными, которые обозначаются как x и y . Уравнение обращается в тождество при подстановке в него значений любой из точек прямой линии.

Давайте посмотрим, какой вид будет иметь уравнение прямой на плоскости. Этому будет посвящен весь следующий раздел нашей статьи. Отметим, что существует несколько вариантов записи уравнения прямой. Объясняется это наличием нескольких способов задания прямой линии на плоскости, и также различной спецификой задач.

Познакомимся с теоремой, которая задает вид уравнения прямой линии на плоскости в декартовой системе координат O x y .

Теорема 1

Уравнение вида A x + B y + C = 0 , где x и y – переменные, а А, В и C – это некоторые действительные числа, из которых A и B не равны нулю, задает прямую линию в декартовой системе координат O x y . В свою очередь, любая прямая линия на плоскости может быть задана уравнением вида A x + B y + C = 0 .

Таким образом, общее уравнение прямой на плоскости имеет вид A x + B y + C = 0 .

Поясним некоторые важные аспекты темы.

Пример 1

Посмотрите на рисунок.

Линия на чертеже определяется уравнением вида 2 x + 3 y - 2 = 0 , так как координаты любой точки, составляющей эту прямую, удовлетворяют приведенному уравнению. В то же время, определенное количество точек плоскости, определяемых уравнением 2 x + 3 y - 2 = 0 , дают нам прямую линию, которую мы видим на рисунке.

Общее уравнение прямой может быть полным и неполным. В полном уравнении все числа А, В и C отличны от нуля. Во всех остальных случаях уравнение считается неполным. Уравнение вида A x + B y = 0 определяет прямую линию, которая проходит через начало координат. Если A равно нулю, то уравнение A x + B y + C = 0 задает прямую, расположенную параллельно оси абсцисс O x . Если B равно нулю, то линия параллельна оси ординат O y .

Вывод: при некотором наборе значений чисел А, В и C с помощью общего уравнения прямой можно записать любую прямую линию на плоскости в прямоугольной системе координат O х у.

Прямая, заданная уравнением вида A x + B y + C = 0 , имеет нормальный вектор прямой с координатами A , B .

Все приведенные уравнения прямых, которые мы рассмотрим ниже, могут быть получены из общего уравнения прямой. Также возможен и обратный процесс, когда любое из рассматриваемых уравнений может быть приведено к общему уравнению прямой.

Разобраться во всех нюансах темы можно в статье «Общее уравнение прямой». В материале мы приводим доказательство теоремы с графическими иллюстрациями и подробным разбором примеров. Особое внимание в статье уделяется переходам от общего уравнения прямой к уравнениям других видов и обратно.

Уравнение прямой в отрезках имеет вид x a + y b = 1 , где a и b – это некоторые действительные числа, которые не равны нулю. Абсолютные величины чисел a и b равны длине отрезков, которые отсекаются прямой линией на осях координат. Длина отрезков отсчитывается от начала координат.

Благодаря уравнению можно легко построить прямую линию на чертеже. Для этого необходимо отметить в прямоугольной системе координат точки a , 0 и 0 , b , а затем соединить их прямой линией.

Пример 2

Построим прямую, которая задана формулой x 3 + y - 5 2 = 1 . Отмечаем на графике две точки 3 , 0 , 0 , - 5 2 , соединяем их между собой.

Эти уравнения, имеющие вид y = k · x + b должны быть нам хорошо известны из курса алгебры. Здесь x и y – это переменные, k и b – это некоторые действительные числа, из которых k представляет собой угловой коэффициент. В этих уравнениях переменная у является функцией аргумента x .

Дадим определение углового коэффициента через определение угла наклона прямой к положительному направлению оси O x .

Определение 2

Для обозначения угла наклона прямой к положительному направлению оси O x в декартовой системе координат введем величину угла α . Угол отсчитывается от положительного направления оси абсцисс до прямой линии против хода часовой стрелки. Угол α считается равным нулю в том случае, если линия параллельна оси O x или совпадает с ней.

Угловой коэффициент прямой – это тангенс угла наклона этой прямой. Записывается это следующим образом k = t g α . Для прямой, которая располагается параллельно оси O y или совпадает с ней, записать уравнение прямой с угловым коэффициентом не представляется возможным, так как угловой коэффициент в этом случае превращается в бесконечность (не существует).

Прямая, которая задана уравнением y = k · x + b , проходит через точку 0 , b на оси ординат. Это значит, что уравнение прямой с угловым коэффициентом y = k · x + b , задает на плоскости прямую линию, которая проходит через точку 0 , b и образует угол α с положительным направлением оси O x , причем k = t g α .

Пример 3

Изобразим прямую линию, которая определяется уравнением вида y = 3 · x - 1 .

Эта линия должна пройти через точку (0 , - 1) . Угол наклона α = a r c t g 3 = π 3 равен 60 градусов к положительному направлению оси O x . Угловой коэффициент равен 3

Обращаем ваше внимание, что с помощью уравнения прямой с угловым коэффициентом очень удобно искать уравнение касательной к графику функции в точке.

Больше материала по теме можно найти в статье «Уравнение прямой с угловым коэффициентом». Помимо теории там размещено большое количество графических примеров и подробный разбор задач.

Данный вид уравнения имеет вид x - x 1 a x = y - y 1 a y , где x 1 , y 1 , a x , a y - это некоторые действительные числа, из которых a x и a y не равны нулю.

Прямая линия, заданная каноническим уравнением прямой, проходит через точку M 1 (x 1 , y 1) . Числа a x и a y в знаменателях дробей представляют собой координаты направляющего вектора прямой линии. Это значит, что каноническое уравнение прямой линии x - x 1 a x = y - y 1 a y в декартовой системе координат O x y соответствует линии, проходящей через точку M 1 (x 1 , y 1) и имеющей направляющий вектор a → = (a x , a y) .

Пример 4

Изобразим в системе координат O x y прямую линию, которая задается уравнением x - 2 3 = y - 3 1 . Точка M 1 (2 , 3) принадлежит прямой, вектор a → (3 , 1) является направляющим вектором этой прямой линии.

Каноническое уравнение прямой линии вида x - x 1 a x = y - y 1 a y может быть использовано в случаях, когда a x или a y равно нулю. Наличие ноля в знаменателе делает запись x - x 1 a x = y - y 1 a y условной. Уравнение можно записать следующим образом a y (x - x 1) = a x (y - y 1) .

В том случае, когда a x = 0 , каноническое уравнение прямой принимает вид x - x 1 0 = y - y 1 a y и задает прямую линию, которая расположена параллельно оси ординат или совпадает с этой осью.

Каноническое уравнение прямой при условии, что a y = 0 , принимает вид x - x 1 a x = y - y 1 0 . Такое уравнение задает прямую линию, расположенную параллельно оси абсцисс или совпадающую с ней.

Больше материала на тему канонического уравнения прямой смотрите здесь. В статье мы приводим целый ряд решений задач, а также многочисленные примеры, которые позволяют лучше овладеть темой.

Параметрические уравнения прямой на плоскости

Данные уравнения имеют вид x = x 1 + a x · λ y = y 1 + a y · λ , где x 1 , y 1 , a x , a y - это некоторые действительные числа, из которых a x и a y не могут быть одновременно равны нулю. В формулу вводится дополнительный параметр λ , который может принимать любые действительные значения.

Назначение параметрического уравнения в том, чтобы установить неявную зависимости между координатами точек прямой линии. Для этого и вводится параметр λ .

Числа x , y представляют собой координаты некоторой точки прямой. Они вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра λ .

Пример 5

Предположим, что λ = 0 .

Тогда x = x 1 + a x · 0 y = y 1 + a y · 0 ⇔ x = x 1 y = y 1 , т. е. точка с координатами (x 1 , y 1) принадлежит прямой.

Обращаем ваше внимание на то, что коэффициенты a x и a y при параметре λ в данном виде уравнений представляют собой координаты направляющего вектора прямой линии.

Пример 6

Рассмотрим параметрические уравнения прямой линии вида x = 2 + 3 · λ y = 3 + λ . Прямая, заданная уравнениями, в декартовой системе координат проходит через точку (x 1 , y 1) и имеет направляющий вектор a → = (3 , 1) .

Больше информации ищите в статье «Параметрические уравнения прямой на плоскости».

Нормальное уравнение прямой имеет вид, A x + B y + C = 0 , где числа А, В, и C таковы, что длина вектора n → = (A , B) равна единице, а C ≤ 0 .

Нормальным вектором линии, заданной нормальным уравнением прямой в прямоугольной системе координат O х у, является вектор n → = (A ,   B) . Эта прямая проходит на расстоянии C от начала координат в направлении вектора n → = (A , B) .

Еще одним вариантом записи нормального уравнения прямой линии является cos α · x + cos β · y - p = 0 , где cos α и cos β - это два действительных числа, которые представляют собой направляющие косинусы нормального вектора прямой единичной длины. Это значит, что n → = (cos α , cos β) , справедливо равенство n → = cos 2 α + cos 2 β = 1 , величина p ≥ 0 и равна расстоянию от начала координат до прямой.

Пример 7

Рассмотрим общее уравнение прямой - 1 2 · x + 3 2 · y - 3 = 0 . Это общее уравнение прямой является нормальным уравнением прямой, так как n → = A 2 + B 2 = - 1 2 2 + 3 2 = 1 и C = - 3 ≤ 0 .

Уравнение задает в декартовой системе координат 0ху прямую линию, нормальный вектор которой имеет координаты - 1 2 , 3 2 . Линия удалена от начала координат на 3 единицы в направлении нормального вектора n → = - 1 2 , 3 2 .

Обращаем ваше внимание на то, что нормальное уравнение прямой на плоскости позволяет находить расстояние от точки до прямой на плоскости.

Если в общем уравнении прямой A x + B y + C = 0 числа А, В и С таковы, что уравнение A x + B y + C = 0 не является нормальным уравнением прямой, то его можно привести к нормальному виду. Подробнее об этом читайте в статье «Нормальное уравнение прямой».

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

10.1. Основные понятия

Линия на плоскости рассматривается (задается) как множество точек, обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние - R от некоторой фиксированной точки О (центра окружности).

Введение на плоскости системы координат позволяет определять по­ложение точки плоскости заданием двух чисел - ее координат, а положе­ние линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).

Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(x;y) = 0 с двумя переменными, которому удовлетворяют координаты x и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Переменные x и у в уравнении линии называются текущими коорди­натами точек линии.

Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.

Так, для того чтобы установить лежит ли точка А(x 0 ; у 0) на данной линии, достаточно проверить (не прибегая к геометрическим построениям), удовлетворяют ли координаты точки А уравнению этой линии в выбран­ной системе координат.

Задача о нахождении точек пересечения двух линий, заданных урав­нениями F 1 (x 1 ;y 1) = 0 и F 2 (x 2 ;y} = 0, сводится к отысканию точек, координаты которых удовлетворяют уравнениям обеих линий, т. е. сводится к решению системы двух уравнений с двумя неизвестными:

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогичным образом вводится понятие уравнения линии в полярной системе координат.

Уравнение F(r; φ)=О называется уравнением данной линии в поляр­ной системе координат, если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению.

Линию на плоскости можно задать при помощи двух уравнений:

где x и у - координаты произвольной точки М(х; у), лежащей на данной линии, а t - переменная, называемая параметром; параметр t определяет положение точки (х; у) на плоскости.

Например, если x = t + 1, у = t 2 , то значению параметра t = 1 соот­ветствует на плоскости точка (3; 4), т. к. x = 1 + 1 = 3, у = 22 - 4.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим , а уравнения (10.1) - параметрическими уравнениями линии.

Чтобы перейти от параметрических уравнений линии к уравнению вида F(x;y) = 0, надо каким-либо способом из двух уравнений исключить параметр t.

Например, от уравнений путем подстановки t = х

во второе уравнение, легко получить уравнение у = х 2 ; или у-х 2 = 0, т. е. вида F(x; у) = 0. Однако, заметим, такой переход не всегда возможен.

Линию на плоскости можно задать векторным уравнением r =r (t) , где t - скалярный переменный параметр. Каждому значению t 0 соответствует определенный вектор r =r (t) плоскости. При изменении параметра t конец вектора r =r (t) опишет некоторую линию (см. рис. 31).

Векторному уравнению линии r =r (t) в системе координат Оху соответствуют два скалярных уравнения (10.1), т. е. уравнения проекций на оси координат векторного уравнения линии есть ее параметрические уравнения. I Векторное уравнение и параметрические уравнения I линии имеют механический смысл. Если точка перемеща- I ется на плоскости, то указанные уравнения называются уравнениями дви­жения, а линия - траекторией точки, параметр t при этом есть время. Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(x; у) = 0.

Всякому уравнению вида F(x; у) = 0 соответствует, вообще говоря, не­которая линия, свойства которой определяются данным уравнением (выражение «вообще говоря» означает, что сказанное допускает исключения. Так, уравнению (х-2) 2 +(у-3 ) 2 =0 соответствует не линия, а точка (2; 3); уравнению х 2 + у 2 + 5 = 0 на плоскости не соответствует никакой геометрический образ).

В аналитической геометрии на плоскости возникают две основные задачи. Первая: зная геометрические свойства кривой, найти ее уравнение) вторая: зная уравнение кривой, изучить ее форму и свойства.

На рисунках 32-40 приведены примеры некоторых кривых и указаны их уравнения.

10.2. Уравнения прямой на плоскости

Простейшей из линий является прямая. Разным способам задания прямой соответствуют в прямоугольной системе координат разные виды её уравнений.

Уравнение прямой с угловым коэффициентом

Пусть на плоскости Оху задана произвольная прямая, не параллельная оси Оу. Ее положение вполне определяется ординатой b точки N(0; b) пересечения с осью Оу и углом a между осью Ох и прямой (см. рис. 41).

Под углом а (0

Из определения тангенса угла следует равенство

Введем обозначение tg a=k , получаем уравнение

(10.2)

которому удовлетворяют координаты любой точки М(х;у) прямой. Мож­но убедиться, что координаты любой точки Р(х;у), лежащей вне данной прямой, уравнению (10.2) не удовлетворяют.

Число k = tga называется угловым коэффициентом прямой, а уравнение (10.2) - уравнением прямой с угловым коэффициентом.

Если прямая проходит через начало координат, то b = 0 и, следова­тельно, уравнение этой прямой будет иметь вид y=kx .

Если прямая параллельна оси Ох, то a = 0, следовательно, k = tga = 0 и уравнение (10.2) примет вид у = b.

Если прямая параллельна оси Оу, то , уравнение (10.2) теряет смысл, т. к. для нее угловой коэффициент не существует.

В этом случае уравнение прямой будет иметь вид

где a - абсцисса точки пересечения прямой с осью Ох. Отметим, что уравнения (10.2) и (10.3) есть уравнения первой степени.

Общее уравнение прямой.

Рассмотрим уравнение первой степени относительно x и y в общем виде

(10.4)

где А, В, С - произвольные числа, причем А и В не равны нулю одно­временно.

Покажем, что уравнение (10.4) есть уравнение прямой линии. Возмож­ны два случая.

Если В = 0, то уравнение (10.4) имеет вид Ах + С = О, причем А ¹ 0 т. е. . Это есть уравнение прямой, параллельной оси Оу и проходящей через точку ·

Если B ¹ 0, то из уравнения (10.4) получаем . Это есть уравнение прямой с угловым коэффициентом |.

Итак, уравнение (10.4) есть уравнение прямой линии, оно называется общим уравнением прямой .

Некоторые частные случаи общего уравнения прямой:

1) если А = 0, то уравнение приводится к виду. Это есть уравнение прямой, параллельной оси Ох;

2) если В = 0, то прямая параллельна оси Оу;

3) если С = 0, то получаем . Уравнению удовлетворяют координаты точки O(0;0), прямая проходит через начало координат.

Уравнение прямой, проходящей через данную точку в данном направлении

Пусть прямая проходит через точку и ее направление определяется угловым коэффициентом k. Уравнение этой прямой можно записать в виде , где b - пока неизвестная величина. Так как прямая проходит через точку , то координаты точки удовлетворяют уравнению прямой:. Отсюда . Подставляя значение b в уравнение, получим искомое уравнение прямой: , т. е.

(10.5)

Уравнение (10.5) с различными значениями k называют также уравнениями пучка прямых с центром в точке Из этого пучка нельзя определить лишь прямую, параллельную оси Оу.

Уравнение прямой, проходящей через две точки

Пусть прямая проходит через точки и . Уравнения прямой, проходящей через точку M 1 , имеет вид

(10.6)

где k - пока неизвестный коэффициент.

Так как прямая проходит через точку , то координаты этой точки должны удовлетворять уравнению (10.6): . Οтсюда находим . Подставляя найденное значение k в уравнение (10.6), получим уравнение прямой, проходящей через точки M 1 и M 2 .

(10.7)

Предполагается, что в этом уравнении ·

Если x 2 = x 1 прямая, проходящая через точки и параллельна оси ординат. Ее уравнение имеет вид .

Если y 2 = y 1 то уравнение прямой может быть записано в виде , прямая M 1 M 2 параллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке , а ось Оу – в точке (см. рис. 42). В этом случае уравнение (10.7) примет вид

Это уравнение называется уравнением прямой в отрезках , так как числа α и b указывают, какие отрезки отсекает прямая на осях координат.

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку перпендикулярно данному ненулевому вектору .

Возьмем на прямой произвольную точку М(х;у) и рассмотрим вектор (см. рис. 43). Поскольку векторы и перпендикулярны, то их скалярное произведение равно нулю: , то есть

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору.

Вектор , перпендикулярный прямой, на­зывается нормальным вектором этой прямой. Уравнение (10.8) можно переписать в виде

(10.9)

где А и B- координаты нормального вектора, - сво­бодный член. Уравнение (10.9) есть общее уравнение прямой (см. (10.4)).

Полярное уравнение прямой

Найдем уравнение прямой в полярных координатах. Ее положение можно опреде­лить, указав расстояние ρ от полюса О до данной прямой и угол α между полярной осью ОΡ и осью l , проходящей через полюс О перпендикулярно данной прямой (см. рис. 44).

Для любой точки на данной прямой имеем:

С другой стороны,

Следовательно,

(10.10)

Полученное уравнение (10.10) и есть уравнение прямой в полярных координатах.

Нормальное уравнение прямой

Пусть прямая определяется заданием p и α (см. рис. 45). Рассмотрим прямоугольную систему координат . Введем полярную систему, взяв за полюс и за полярную ось. Уравнение прямой можно записать в виде

Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: , . Следовательно, уравнение (10.10) прямой в прямоугольной системе координат примет вид

(10.11)

Уравнение (10.11) называется нормальным уравнением прямой .

Покажем, как привести уравнение (10.4) прямой к виду (10.11).

Умножим все члены уравнения (10.4) на некоторый множитель . Получим . Это уравнение долж­но обратиться в уравнение (10.11). Следо­вательно, должны выполняться равенства: , , . Из первых двух равенств находим,т. е. . Множитель λ называется нормирующим множителем . Согласно третьему равенству знак нормирующего множителя противоположен знаку свобод­ного члена С общего уравнения прямой.

Лучшие статьи по теме