Для школьников и родителей
  • Главная
  • Здоровье 
  • Эффектов запаздывания в вакууме казимира. Новая мысль. От нанометров к космическим путешествиям

Эффектов запаздывания в вакууме казимира. Новая мысль. От нанометров к космическим путешествиям

В 1948г Г. Казимир теоретически предсказал эффект, названный позднее его именем . Эффект заключается в том, что на каждую из двух размещённых напротив друг друга плоских, параллельных, проводящих пластин в вакууме, по нормали к ним, действуют силы не гравитационного происхождения, стремящиеся их сблизить (рис 1).

Рис.1. Классический эффект Казимира.

Современное объяснение появления этих сил заключается в том, что они вызываются разницей в давлении виртуальных фотонов на пластины снаружи и изнутри. Согласно законам квантовой механики, между пластинами могут существовать фотоны только с такими длинами волн, которые кратно укладываются в зазоре между пластинами. Т.о., в зазоре «выедается» основная часть виртуальных фотонов, присутствующих в свободном пространстве, и имеющих произвольные длины волн. В результате, давление на пластины снаружи существенно превышает давление изнутри что и вызывает появление силы Казимира.

2. Сила Казимира для 2-х плоских проводящих поверхностей, на единицу площади, равна:

, (1)

где «-» означает, что наблюдается притяжение пластин друг к другу, – постоянная Планка, c – скорость света, а d – расстояние между пластинами .

Численно F c [дин]= 1.3*10 -18 * S/d 4 , где S и d измеряются в [см]. Например, для пластин площадью 1 см 2 и d= 10 нм, сила составит примерно 10 6 дин, т.е. давление на пластины будет порядка атмосферного!

Величина силы Казимира подтверждена в экспериментах, начиная 1958 г. и совпадает с теоретическим значением для широкого спектра геометрий: плоские пластины, пластина и сфера, два цилиндра, наноконструкции и пр. (см. например, номера 7-15 в списке литературы к и номера 13-21 в списке литературы к ).

На сегодня точность экспериментов доведена до процентов от теоретических значений, что неоспоримо подтверждает существование силы Казимира, как физического явления, а также правильность вычисления её величины.

3. Для изучения свойств силы Казимира, в частности, активно используется геометрия «сфера + плоскость» (рис 2), , , .


Рис.2. Геометрия «сфера + плоскость»

Теоретическое значение силы Казимира для сферы и плоскости (для случая d << R) даётся выражением .:

*R (2).

Эта формула м.б. получена из (1) при самых общих и естественных приближениях, известных, как PFA (Proximity Force Approximation), или PAA (Pairwise Additive Approximation), способ расчёта , .

Используя стандартный способ интегрирования по сфере, бесконечно малый элемент её поверхности , заменяем бесконечно малым, считающимся в силу размеров плоским, 4-х угольником , с нормалью, направленной по радиусу под углом к оси Z. Вся сфера рассматривается как тело, образованное бесконечным числом таких бесконечно малых 4-х угольников. По естественным причинам рассматривается только нижняя полусфера сферы «С», т.е. диапазон углов: = и = , относительно оси Z, которая является нормалью к плоскости XY.

Т.о., совпадение результатов ряда экспериментов с расчётами, произведёнными по (2), доказывает принципиальную применимость выражения (1) для вычисления сил Казимира в произвольных геометриях.

5. Теперь зададимся вопросом о направлении сил Казимира в геометрии плоских, но не параллельных пластин.

Как отмечено выше, выражение (1) работает в случае произвольной геометрии и кривизны, следовательно, оно работает и в простейшем случае: в случае плоскостей, расположенных под произвольным углом друг к другу.

Расположим пластины следующим образом: по одной из одноимённых сторон приведём их в соприкосновение, а противоположные стороны – разведём в стороны (рис 4). Мы получили конструкцию «уголок». Это конструкция, напоминает в плане букву «V» и имеет произвольную длину «вглубь» рисунка.


Рис.4. Конструкция «уголок»

Сила Казимира является результатом воздействия виртуальных фотонов на площадку dS . При абсолютно упругом ударе (чем и является отражение фотона) меняется только нормальная составляющая импульса P фотон , а тангенциальная составляющая остаётся неизменной. Т.о., вектор переданного площадке dS импульса P с направлен по нормали к поверхности. Отметим также тот факт, что направление движения фотона: сверху вниз, или снизу вверх не влияет на направление импульса P с (рис. 5).


Рис.5. Импульс передаётся всегда в одном направлении, независимо от направления движения фотонов: снизу вверх, или сверху вниз.

Учитывая все рассмотренные факты и выводы из них, мы приходим к заключению, что на каждую плоскость, образующую данную конструкцию «V», «уголок»:

1. Действует сила Казимира – полностью аналогично тому, как она действует на любой элемент сферы , не параллельный плоскости XY.

2. По причинам, указанным выше, сила действует на каждую плоскость по нормали к ней и направлена внутрь «уголка».

Проведя разложение сил Казимира F c (действующих на каждую из пластин) на составляющие F x и F z , мы видим, что:

Х-составляющие сил, приложенных к пластинам уголка, равны, и направлены навстречу друг другу. Т.о., они являются чистой силой Казимира и стремятся сблизить пластины.

Z-составляющие сил СУММИРУЮТСЯ, что приводит к появлению некомпенсированной силы вдоль оси z (рис. 6).

Рис.6. Разложение на составляющие силы Казимира (для левой поверхности)

Т.о., мы пришли к выводу, что на «уголок» вдоль оси z действует постоянная сила, создаваемая давлением на эту макро конструкцию виртуальных частиц (в данном случае – фотонов) и эта сила направлена от вершины «уголка» к его раствору.

6. Т.к. новые эффекты следует оценить с точки зрения их соответствия законам сохранения, необходимо сразу и определённо отметить, что существование силы тяги не нарушает этих законов.

Дело в том, что мы рассматриваем, безусловно ОТКРЫТУЮ систему, для которой «уголок» является лишь одной из её частей и, сам по себе, не создаёт никаких сил.

Появление F тяги обусловлено взаимодействием уголка с виртуальными фотонами, т.е. с вакуумом фотонов Вселенной, которые (виртуальные фотоны) всегда существуют в пространстве и не могут быть экранированы полностью в принципе.

Чтобы снять затруднения в понимании сути полученного результата, достаточно указать на практически полную аналогию в принципе действия описанной конструкции и обычного паруса. Обе эти конструкции являются всего лишь препятствиями, специальным образом сконструированными и размещёнными в пространстве, где существует внешнее по отношению к ним движение материальных элементов.

Эти внешние элементы обладают энергией и импульсом, которые обусловлены глобальными процессами, законами и взаимодействиями, носящими полностью независимый характер по отношению к такому частному явлению, как размещение уголка, или паруса в данной точке пространства-времени.

Т.о., возникающая сила, приложенная к преграде (парусу или уголку), является следствием давления внешних элементов на преграду и не нарушает никаких законов сохранения.

Итак, уголок является конструкцией, преобразующей движение виртуальных фотонов в управляемое по вектору и тяге движение макротела, т.е. управляемым движителем.

7. Вычисляя силу тяги «уголка» при помощи (1), в PFA приближении, (пункт 3), получаем:

) (3)

где b – «длина» уголка (буквы V «вглубь» страницы), L min min , L max - расстояние между сторонами уголка по уровню Z max . Как конкретно измеряются эти величины показано на рис. 7.

Рис.7. К выводу формулы для силы тяги «уголка»

Данная формула работает в диапазоне углов: 0< α <(π /4). При α= 0 она переходит в выражение (1) для плоскопараллельных пластин, а при углах α >=(π /4) приближение PFA для этой геометрии не работает.

В силу зависимости F тяги от ) очевидно, что величина параметра L max , фактически, не играет роли, т.к. L max >> L min .

Т.о., для практических расчётов и оценок, мы имеем следующее выражение (принимая α ~0):

F тяги [дин] ~ 217 * b / (L min ) 3 , где b измеряется в [см], а L min в [нм].

Величина L min ограничена снизу уровнем «обрезания», который определяется технологически:

Точностью изготовления пластин (их шероховатостью, степенью плоскостности), а также

МИНИМАЛЬНОЙ длиной волны фотонов, которые может эффективно отражать вещество, из которого изготовлен уголок.

Особое внимание следует обратить на то, в силу зависимости F тяги от (), сила тяги ЧРЕЗВЫЧАЙНО чувствительна к самому незначительному изменению L min .

Изменение в (3) других технологических параметров, т.е.:

Увеличение коэффициента отражения поверхностей и/ или расширение диапазона эффективности отражателя в область высоких частот и

Увеличение суммарной длины «уголка» (параметра «b» – длины буквы V «вглубь страницы»),

будут увеличивать F тяги линейно.

8. Для понимания того, где мы находимся (технологически) в данный момент, можно отметить, что передовые, но не уникальные современные технологии микроэлектроники, при соответствующей доработке, скорее всего смогут создать панели-движители габаритами метр на метр и незначительной толщины, тяга которых будет составлять единицы- десятки дин, что вполне позволяет использовать их как движители малой тяги для космических конструкций.

Панель (в плане), скорее всего, будет выглядеть как сборка уголков: «VVV…VVV», а сам движитель – как набор таких панелей, закреплённых на управляемых независимых подвесах (рис. 8).

Рис.8. Конструкция панели из «уголков»

Отметим, что для полного управления вектором и тягой созданного устройства будет достаточно двух одинаковых панелей (рис. 9).

Рис.9. Принцип управления конструкцией на основе панелей с «уголками»: a – движение отсутствует, b – движение в произвольном направлении

Для оценки силы тяги уголка используем следующие значения:

Материал: алюминий (Al ), плотность ρ = 2.69 [г/см 3 ],

Угол полураствора уголка, α - минимальный, единицы угловых градусов,

Максимальный раствор уголка, L max >> L min ,

Длина стороны уголка (длина одного из отрезков, образующих букву V), L>~ 100 [мкм],

Уголок заполняет всю возможную площадь панели размером 1[м] х 1[м] (рис. 8) таким образом, что расстояние между одноименными элементами параллельных уголков равно 200 [мкм]. Т.о., его суммарная длина составляет b= 500 000 [см] (5 км),

Минимальная длина волны фотонов эффективно отражаемых поверхностью уголка (Al ) , λ min = 200 [нм] и, т.о. L min =200 [нм],

Коэффициент отражения поверхности (Al ) на длине волны λ min = 200 [нм]: R= 0.8,

В результате мы получаем F тяги ~ 10 [дин].

Уменьшение L min до 50 [нм] (при значении R~ 0.2) обеспечит силу тяги F тяги ~ 170 [дин].

Если же L min удастся довести до 10 [нм], имея при этом коэффициент нормального отражения R~ 0.1, это позволит получить F тяги ~ 11 000 [дин].

Оценивая ускорение ненагруженной панели, имеем следующие величины (при массе панели ~ 700г, размерах 1 м * 1 м * 0.5 мм, коэффициенте пустотелости= 0.5, материале - Al ):

L min = 200 [нм]: ускорение a= 0.016 [см/с 2 ],

L min = 50 [нм]: ускорение a= 0.24 [см/с 2 ],

L min = 10 [нм]: ускорение a= 16 [см/с 2 ]= 0.016 [g].

9. Качественное подтверждение рассматриваемого эффекта в эксперименте, может быть получено достаточно просто и быстро в результате проведения измерений тяги «уголка», закрепляемого в разной ориентации на крутильных весах.

10 . Эффект Казимира является макроскопическим результатом существования виртуальных фотонов. Таким же статусом существования обладают и все прочие виртуальные частицы – как массовые, так и безмассовые.

В связи с этим представляет значительный интерес экспериментальное изучение аналогов эффекта Казимира для других полей и частиц. Особенно интересна оценка возможности получения силы тяги и её технологически достижимая величина.

Относится к «Флуктуации вакуума»

Эффект Казимира

Эффект Казимира: сила "из ничего"

Астрид Ламбрехт (Astrid Lambrecht)

перевод Павлюченко С.

Сила притяжения между двумя поверхностями в вакууме, впервые предсказанная Генрихом Казимиром (Hendrik Casimir) более 50 лет назад, может повлиять практически на все - от микроприборов до теор ий Мироздания.

Однако, очень не во многих экспериментах, измеряющих силу Казимира, использовалась оригинальная конфигурация плоскостей как параллельных зеркал. Связано это с тем, что их необходимо сохранять параллельными в течение всего эксперимента, что очень тяжело. Значительно проще поднести сферу достаточно близко к зеркалу, так как расстояние между объектами, используемое в формуле для вычисления силы, в данном случае - просто расстояние между ближайшими точками. Единственный недостаток использования сферы и плоского зеркала состоит в том, что вычисления силы Казимира в этом случае не так точны, как в случае двух параллельных зеркал. В частности, предполагается, что вклады силы между сферой и пластиной полностью независимы в каждой точке. А это верно только если радиус сферы много больше расстояния между сферой и пластиной.

И лишь совсем недавно был проведен эксперимент, полностью повторяюший Казимировскую систему из двух плоских, параллельных зеркал. Он был проведен Джанни Каругно (Gianni Carugno), Роберто Онофрио (Roberto Onofrio) с сотрудниками из Университета Падовы в Италии. Они измерили силу между жесткой хромированной пластинкой и плоской поверхностью кронштейна, сделанного из такого же материала, которые были разнесены на 0.5-3 микрона (G Bressi et al. 2002 Phys. Rev. Lett. 88 041804). По их измерениям, сила Казимира согласуется с теор етическим предсказанием на 75 % . Такая относительно большая погрешность связана с техническими трудностями при осуществлении эксперимента.

Более точные вычисления

Проблема в изучении эффекта Казимира состоит в том, что обычные зеркала - не идеально гладкие и плоские, как рассматривал Генрих Казимир. В частности, обычные зеркала не отражают идеально на всех длинах волн. На некоторых они отражают хорошо - даже почти идеально, в то же время как на других - плохо. Кроме того, все зеркала становятся прозрачными на очень высоких частотах. Таким образом, при вычислении силы Казимира необходимо принимать во внимание зависящие от частот коэффициенты отражения от зеркал. Эту проблему рассматривал Евгений Лифшиц в 1950-е годы, потом Джулиан Швингер (Julian Schwinge) и многие другие.

Оказалось, что измеряемая сила Казимира между обычными металлическими зеркалами, находящимися на расстоянии 0.1 микрон, составляет только половину от предсказываемой теор ией для идеальных зеркал. Если не принимать во внимание это разногласие при сравнении экспериментальных данных с теор ией, можно сделать неверное заключение о том, что это несогласие вызвано существованием новой силы. Астрид Ламбрехт (Astrid Lambrecht) и его коллега Серж Рейнод (Serge Reynaud) проводили свои вычисления для реального поведения зеркал, принимая во внимание физические свойства металлов. Они заключили, что в случае простейшей модели зеркала ведут себя "нормально" на расстояниях, превышающих 0.5 микрон.

Другой прблемой, возникающей при вычислении теор етического значения силы Казимира, является тот факт, что эксперимент в принципе не может быть проведен при абсолютном нуле - что предполагалось в вычислениях Казимира - а проводится при комнатной температуре. Из-за этого приходится учитывать еще и тепловые флуктуации. Они могут создать собственное давление излучения и этим увеличить эффект силы Казимира. Например, сила Казимира, действующая между плоскими зеркалами, разнесенными на 7 микрон, при комнатной температуре оказывается в два раза больше, чем при абсолютном нуле. К счастью, тепловые флуктуации при комнатной температуре важны лишь на дистанциях больше одного микрона, при меньших расстояниях длина волны флуктуации слишком велика, чтобы хотя бы один раз полностью уложиться в потенциал ьную яму.

Хотя влияние температуры на силу Казимира еще не исследовано в деталях, ее необходимо учитывать при расстояниях, превышающих один микрон. Многие исследователи бились над этой проблемой, в том числе Лифшиц и Швингер в 1950-х. Не так давно ее рассматривали Майкл Бордаг (Michael Bordag) из Университета Лейпцига, Бо Сернелиус (Bo Sernelius) из Университета Линкопинг (Linköping University) в Швеции, Галина Климчитская и Владимир Мостапенко из Университета Парайбы (University of Paraiba) а Бразилии, а также группа Астрида Ламбрехта в Париже. Зависимость силы Казимира от температуры была некоторое время назад темой горячих обсуждений в научной среде. Правда, многие противоречия уже разрешены, но они стимулировали эксперименты по определению зависимости силы Казимира от температуры.

Третьей и последней проблемой при вычислении силы Казимира является тот факт, что настоящие зеркала не идеально гладкие. Подавляющее большинство зеркал сделаны путем покрытия основы тонкой металлической пленкой; при этом используется технология "напыления". В этом случае толщина пленки колеблется на 50 нм. Такая точность незаметна для невооруженного глаза, но оказывает влияние на измеряемое значение силы Казимира, которая очень чуствительна к расстоянию.

Мохиден (Mohideen) и его группа (Калифорния), используя деформированные поверхности, недавно показали, что такие поверхности также испытывают "боковую" силу Казимира, которая действует не в перпендикулярном, а в параллельном направлении по отношению к зеркалу. Для экспериментов они приготовили специальные зеркала, поверхности которых были синусоидально искривлены. Затем они двигали зеркала таким образом, чтобы пик одного из зеркал проходил последовательно через пики и "минимумы" второго зеркала. Было обнаружено, что боковая сила Казимира меняется синусоидально с разностью фаз между двумя "волнами". Величина силы оказалась в 10 раз меньше, чем она была бы в случае "нормальных" зеркал, разнесенных на такое же расстояние. Боковая сила своей природой также обязана флуктуациям вакуума.

Мехран Кадар (Mehran Kadar) с сотрудниками из Массачусетского Технологического Института вычислили теор етическое значение силы между двумя идеально отражаюшими волнистыми зеркалами, в то время как Мохиден с коллегами пересчитали ее для металлических зеркал и нашли хорошее согласие теор ии с экспериментом. Боковая сила Казимира может иметь и другие последствия для микроприборов.

Новая физика?

Эффект Казимира может также играть роль при точных измерениях силы в микромире на микро- и нанометровых шкалах. Ньютоновский закон много раз проверялся в макромире, например, при исследовании движения планет. Но еще никому не удавалось проверить его на микронных расстояниях с хорошей точностью. Такие тесты очень важны, так как существует множество теор ий, в которых происходит объединение всех четырех взаимодействий, и эти теор ии предсказывают существование новых сил, действующих на этих шкалах. Таким образом, любое расхождение между экспериментом и теор ией может интерпретироваться как существование новых сил. В любом случае, измерения положат новые ограничения на существуюшие теор ии.

Джинс Гандблах (Jens Gundlach) с коллегами из Вашингтона, например, использовали крутильный маятник для определения гравитационной силы между двумя тестовыми массами, разделенными от 10 мм до 220 микрон. Их измерения подтвердили, что ньютоновская гравитация действует на этих шкалах, а сила Казимира доминирует на значительно меньших расстояниях. Тем временем Джошуа Лонг (Joshua Long), Джонн Прайс (John Price) с коллегами из Университета Колорадо вместе с Эфрамом Фишбахом (Ephraim Fischbach) и его сотрудниками из Университета Парду (Purdue University) попытались устранить действие эффекта Казимира на субмиллиметровые тесты гравитации путем более тщательного выбора материалов, используемых в эксперименте.

Эта статья дает только краткий обзор многих экспериментальных и теор етических исследований эффекта Казимира. Конечно, существует множество не менее захватывающих экспериментов. Многие научные группы, например, изучают, что будет, если во взаимодействии между зеркалами участвует не электромагнитное поле, переносчиком которого являются безмассовые бозоны, а поля массивных фермионов, таких, как кварки или нейтрино. Другие команды, тем временем, изучают эффект Казимира для случаев с другими топологиями, такими, как лист Мебиуса и торообразные объекты.

Но, несмотря на все прилагаемые исследователями усилия, все еще остается много неразрешенных проблем, связанных с эффектом Казимира. В частности, кажущийся простым вопрос о силе Казимира в одиночной полой сфере все еще остается животрепещущим. Даже нет уверенности, будет ли эта сила притягивающей или отталкивающей. Сам Генрих Казимир размышлял над этой проблемой в 1953, когда искал стабильную модель электрона.

M Bordag, U Mohideen and V M Mostepanenko 2001 New developments in the Casimir effect Phys. Rep. 353 1

H B Chan et al. 2001 Nonlinear micromechanical Casimir oscillator Phys. Rev. Lett. 87 211801

F Chen and U Mohideen 2002 Demonstration of the lateral Casimir force Phys. Rev. Lett. 88 101801

C Genet, A Lambrecht and S Reynaud 2000 Temperature dependence of the Casimir force between metallic mirrors Phys. Rev. A 62 012110

S K Lamoreaux 1997 Demonstration of the Casimir force in the 0.6 to 6 micrometer range Phys. Rev. Lett. 78 5

K A Milton 2001 The Casimir Effect: Physical Manifestations of Zero-point Energy (World Scientific, Singapore)

Сила из пустого пространства: эффект Казимира

Авторы: Umar Mohideen (U. California at Riverside)

Пояснение: Этот маленький шарик дает основания предполагать, что Вселенная будет вечно расширяться. Шарик, имеющий размер немного больше одной десятой миллиметра, движется к гладкой пластинке в результате действия флуктуаций энерги и в вакууме. Это притяжение известно как эффект Казимира, названный по имени его первооткрывателя. 50 лет назад он пытался понять, почему жидкости, подобные майонезу, текут так медленно.
Сейчас появляется все больше свидетельств того, что большая часть энерги и Вселенной находится в неизвестной форме, называемой темной энерги ей. Форма и происхождение темной энерги и практически неизвестны, однако утверждается, что она связана с флуктуациями вакуума, похожими на эффект Казимира, но каким-то образом возникающими в самом пространстве. Эта огромная и загадочная темная энерги я должна отталкивать все вещество и поэтому, вероятно, может быть причиной бесконечного расширения Вселенной. Изучение флуктуаций вакуума находится на переднем крае исследований не только потому, что оно служит для лучшего понимания нашей Вселенной, оно важно также для предотвращения слипания деталей миниатюрных механизмов.

Сила притяжения между двумя поверхностями в вакууме, впервые предсказанная Генрихом Казимиром (Hendrik Casimir) более 50 лет назад, может повлиять практически на все - от микроприборов до теорий Мироздания.

Однако, очень не во многих экспериментах, измеряющих силу Казимира, использовалась оригинальная конфигурация плоскостей как параллельных зеркал. Связано это с тем, что их необходимо сохранять параллельными в течение всего эксперимента, что очень тяжело. Значительно проще поднести сферу достаточно близко к зеркалу, так как расстояние между объектами, используемое в формуле для вычисления силы, в данном случае - просто расстояние между ближайшими точками. Единственный недостаток использования сферы и плоского зеркала состоит в том, что вычисления силы Казимира в этом случае не так точны, как в случае двух параллельных зеркал. В частности, предполагается, что вклады силы между сферой и пластиной полностью независимы в каждой точке. А это верно только если радиус сферы много больше расстояния между сферой и пластиной.

И лишь совсем недавно был проведен эксперимент, полностью повторяюший Казимировскую систему из двух плоских, параллельных зеркал. Он был проведен Джанни Каругно (Gianni Carugno), Роберто Онофрио (Roberto Onofrio) с сотрудниками из Университета Падовы в Италии. Они измерили силу между жесткой хромированной пластинкой и плоской поверхностью кронштейна, сделанного из такого же материала, которые были разнесены на 0.5-3 микрона (G Bressi et al. 2002 Phys. Rev. Lett. 88 041804). По их измерениям, сила Казимира согласуется с теоретическим предсказанием на 75 % . Такая относительно большая погрешность связана с техническими трудностями при осуществлении эксперимента.

Более точные вычисления

Проблема в изучении эффекта Казимира состоит в том, что обычные зеркала - не идеально гладкие и плоские, как рассматривал Генрих Казимир. В частности, обычные зеркала не отражают идеально на всех длинах волн. На некоторых они отражают хорошо - даже почти идеально, в то же время как на других - плохо. Кроме того, все зеркала становятся прозрачными на очень высоких частотах. Таким образом, при вычислении силы Казимира необходимо принимать во внимание зависящие от частот коэффициенты отражения от зеркал. Эту проблему рассматривал Евгений Лифшиц в 1950-е годы, потом Джулиан Швингер (Julian Schwinge) и многие другие.

Оказалось, что измеряемая сила Казимира между обычными металлическими зеркалами, находящимися на расстоянии 0.1 микрон, составляет только половину от предсказываемой теорией для идеальных зеркал. Если не принимать во внимание это разногласие при сравнении экспериментальных данных с теорией, можно сделать неверное заключение о том, что это несогласие вызвано существованием новой силы. Астрид Ламбрехт (Astrid Lambrecht) и его коллега Серж Рейнод (Serge Reynaud) проводили свои вычисления для реального поведения зеркал, принимая во внимание физические свойства металлов. Они заключили, что в случае простейшей модели зеркала ведут себя "нормально" на расстояниях, превышающих 0.5 микрон.

Другой прблемой, возникающей при вычислении теоретического значения силы Казимира, является тот факт, что эксперимент в принципе не может быть проведен при абсолютном нуле - что предполагалось в вычислениях Казимира - а проводится при комнатной температуре. Из-за этого приходится учитывать еще и тепловые флуктуации. Они могут создать собственное давление излучения и этим увеличить эффект силы Казимира. Например, сила Казимира, действующая между плоскими зеркалами, разнесенными на 7 микрон, при комнатной температуре оказывается в два раза больше, чем при абсолютном нуле. К счастью, тепловые флуктуации при комнатной температуре важны лишь на дистанциях больше одного микрона, при меньших расстояниях длина волны флуктуации слишком велика, чтобы хотя бы один раз полностью уложиться в потенциальную яму.

Хотя влияние температуры на силу Казимира еще не исследовано в деталях, ее необходимо учитывать при расстояниях, превышающих один микрон. Многие исследователи бились над этой проблемой, в том числе Лифшиц и Швингер в 1950-х. Не так давно ее рассматривали Майкл Бордаг (Michael Bordag) из Университета Лейпцига, Бо Сернелиус (Bo Sernelius) из Университета Линкопинг (Linköping University) в Швеции, Галина Климчитская и Владимир Мостапенко из Университета Парайбы (University of Paraiba) а Бразилии, а также группа Астрида Ламбрехта в Париже. Зависимость силы Казимира от температуры была некоторое время назад темой горячих обсуждений в научной среде. Правда, многие противоречия уже разрешены, но они стимулировали эксперименты по определению зависимости силы Казимира от температуры.

Третьей и последней проблемой при вычислении силы Казимира является тот факт, что настоящие зеркала не идеально гладкие. Подавляющее большинство зеркал сделаны путем покрытия основы тонкой металлической пленкой; при этом используется технология "напыления". В этом случае толщина пленки колеблется на 50 нм. Такая точность незаметна для невооруженного глаза, но оказывает влияние на измеряемое значение силы Казимира, которая очень чуствительна к расстоянию.

Мохиден (Mohideen) и его группа (Калифорния), используя деформированные поверхности, недавно показали, что такие поверхности также испытывают "боковую" силу Казимира, которая действует не в перпендикулярном, а в параллельном направлении по отношению к зеркалу. Для экспериментов они приготовили специальные зеркала, поверхности которых были синусоидально искривлены. Затем они двигали зеркала таким образом, чтобы пик одного из зеркал проходил последовательно через пики и "минимумы" второго зеркала. Было обнаружено, что боковая сила Казимира меняется синусоидально с разностью фаз между двумя "волнами". Величина силы оказалась в 10 раз меньше, чем она была бы в случае "нормальных" зеркал, разнесенных на такое же расстояние. Боковая сила своей природой также обязана флуктуациям вакуума.

Мехран Кадар (Mehran Kadar) с сотрудниками из Массачусетского Технологического Института вычислили теоретическое значение силы между двумя идеально отражаюшими волнистыми зеркалами, в то время как Мохиден с коллегами пересчитали ее для металлических зеркал и нашли хорошее согласие теории с экспериментом. Боковая сила Казимира может иметь и другие последствия для микроприборов.

Новая физика?

Эффект Казимира может также играть роль при точных измерениях силы в микромире на микро- и нанометровых шкалах. Ньютоновский закон много раз проверялся в макромире, например, при исследовании движения планет. Но еще никому не удавалось проверить его на микронных расстояниях с хорошей точностью. Такие тесты очень важны, так как существует множество теорий, в которых происходит объединение всех четырех взаимодействий, и эти теории предсказывают существование новых сил, действующих на этих шкалах. Таким образом, любое расхождение между экспериментом и теорией может интерпретироваться как существование новых сил. В любом случае, измерения положат новые ограничения на существуюшие теории.

Джинс Гандблах (Jens Gundlach) с коллегами из Вашингтона, например, использовали крутильный маятник для определения гравитационной силы между двумя тестовыми массами, разделенными от 10 мм до 220 микрон. Их измерения подтвердили, что ньютоновская гравитация действует на этих шкалах, а сила Казимира доминирует на значительно меньших расстояниях. Тем временем Джошуа Лонг (Joshua Long), Джонн Прайс (John Price) с коллегами из Университета Колорадо вместе с Эфрамом Фишбахом (Ephraim Fischbach) и его сотрудниками из Университета Парду (Purdue University) попытались устранить действие эффекта Казимира на субмиллиметровые тесты гравитации путем более тщательного выбора материалов, используемых в эксперименте.

Эта статья дает только краткий обзор многих экспериментальных и теоретических исследований эффекта Казимира. Конечно, существует множество не менее захватывающих экспериментов. Многие научные группы, например, изучают, что будет, если во взаимодействии между зеркалами участвует не электромагнитное поле, переносчиком которого являются безмассовые бозоны, а поля массивных фермионов, таких, как кварки или нейтрино. Другие команды, тем временем, изучают эффект Казимира для случаев с другими топологиями, такими, как лист Мебиуса и торообразные объекты.

Но, несмотря на все прилагаемые исследователями усилия, все еще остается много неразрешенных проблем, связанных с эффектом Казимира. В частности, кажущийся простым вопрос о силе Казимира в одиночной полой сфере все еще остается животрепещущим. Даже нет уверенности, будет ли эта сила притягивающей или отталкивающей. Сам Генрих Казимир размышлял над этой проблемой в 1953, когда искал стабильную модель электрона.

M Bordag, U Mohideen and V M Mostepanenko 2001 New developments in the Casimir effect Phys. Rep. 353 1

H B Chan et al. 2001 Nonlinear micromechanical Casimir oscillator Phys. Rev. Lett. 87 211801

F Chen and U Mohideen 2002 Demonstration of the lateral Casimir force Phys. Rev. Lett. 88 101801

C Genet, A Lambrecht and S Reynaud 2000 Temperature dependence of the Casimir force between metallic mirrors Phys. Rev. A 62 012110

S K Lamoreaux 1997 Demonstration of the Casimir force in the 0.6 to 6 micrometer range Phys. Rev. Lett. 78 5

K A Milton 2001 The Casimir Effect: Physical Manifestations of Zero-point Energy (World Scientific, Singapore)

  • 1958 - непрямой эксперимент: Спарнаай использовал параллельные пластины, чтобы получить наглядные проявления эффекта Казимира, но с множеством экспериментальных ошибок;
  • 1972 - непрямой эксперимент: Сабиски и Андерсон измерили толщину гелиевых пленок, косвенно подтвердив эффект Казимира;
  • 1978 - непрямой эксперимент: фон Блэк и Овербеек наблюдали силу качественно;
  • 1997 - прямой эксперимент: Ламоро, Мохидин и Рой качественно измерили силу в пределах 15% от величины, предсказанной теорией;
  • 2001 - прямой эксперимент: ученые из Университета Пади использовали микрорезонаторы, чтобы обнаружить этот эффект между параллельными пластинами.

За многие годы стало очевидно, что использование двух параллельных пластин для обнаружения этой силы требует невероятной точности, когда дело доходит до выравнивания. Одна из пластин была замещена сферической пластиной с очень большим радиусом.

Динамический эффект Казимира потребовал больше времени для проверки. Он был предсказан в 1970-х годах и экспериментально подтвержден в мае 2011 года учеными из Технологического университета Чалмерса в Гетеборге, Швеция. Ученые генерировали микроволновые фотоны в вакууме сверхпроводящего микроволнового резонатора. Для достижения эффекта движущейся пластины ученые использовали модифицированный SQUID (сверхпроводящее устройство квантовой интерференции), чтобы регулировать дистанцию между пластинами. Результаты до сих пор находятся на рассмотрении научной экспертизы, но если они подтвердятся, это будет первое экспериментальное подтверждение динамического эффекта Казимира.

От нанометров к космическим путешествиям

Как же от силы, сдвигающей нанопластинки, перейти к космическим путешествиям на околосветовых скоростях? Динамический эффект Казимира можно использовать, чтобы создать двигатель для космического корабля, получая энергию прямо из вакуума. Хотя эта идея весьма амбициозная, один молодой египтянин уже ее запатентовал.

Другая теория, которая вытекает из эффекта Казимира, заключается в том, что червоточину вследствие нехватки массы между двумя пластинами. В теории это может привести к путешествиям быстрее света, хотя это спекулятивно и вообще теория.

К счастью, проводятся новые эксперименты, технологии улучшаются, и вполне может так статься, что использование эффекта Казимира на практике не за горами. В частности, он может пригодиться в нанотехнологиях - в кремниевой схемотехнике и осцилляторах Казимира.

А позднее подтверждён экспериментально.

Современные исследования эффекта Казимира

  • эффект Казимира для диэлектриков
  • эффект Казимира при ненулевой температуре
  • связь эффекта Казимира и иных эффектов или разделов физики (связь с геометрической оптикой , декогеренцией , полимерной физикой)
  • динамический эффект Казимира
  • учёт эффекта Казимира при разработке высокочувствительных МЭМС -устройств.

Литература

  • В. М. Мостепаненко, Н. Н. Трунов . Эффект Казимира и его приложения. УФН , 1988, т. 156, вып. 3, с. 385-426.
  • А. А. Гриб, С. Г. Мамаев, В. М. Мостепаненко . Вакуумные квантовые эффекты в сильных полях. М.: Энергоатомиздат, 1988.

Примечания

Ссылки


Wikimedia Foundation . 2010 .

  • Андермат
  • Кавала

Смотреть что такое "Эффект Казимира" в других словарях:

    ЭФФЕКТ КАЗИМИРА - совокупность физ. явлений, обусловленных специфической поляризацией вакуума квантованных полей вследствие изменения спектра нулевых колебаний в областях с границами и в пространствах с нетривиальной топологией. Предсказан X. Казимиром в 1948 … Физическая энциклопедия

    Эффект Казимира

    Эффект Шарнхорста - гипотетический опыт, в котором световой сигнал может двигаться между двумя близко расположенными пластинами быстрее скорости света. Явление предсказано Клаусом Шарнхорстом из Гумбольдтского университета (Германия) и Гэбриэлом Бартоном из… … Википедия

    Вакуум Казимира - Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. В … Википедия

    сила Казимира - Термин сила Казимира Термин на английском Casimir forces Синонимы эффект Казимира Аббревиатуры Связанные термины Определение сила, обусловленная наличием граничных условий вторичного квантования нулевых колебаний электромагнитного поля в вакууме … Энциклопедический словарь нанотехнологий

    Графен - Пожалуйста, актуализируйте данные В этой статье данные предоставлены преимущественно за 2007 2008 гг … Википедия

    Казимир, Хендрик - Хендрик Казимир Hendrik Brugt Gerhard Casimir … Википедия

    Хендрик Казимир - Hendrik Brugt Gerhard Casimir Хендрик Хенк Бругт Герхард Казимир Дата рождения: 15 июля 1909 Место рождения: с Гравенхаге (Гаага), Нидерланды Дата смерти … Википедия

    Casimir Effect - Casimir Effect Эффект Казимира Эффект, заключающийся во взаимном притяжении проводящих незаряженных тел под действием квантовых флуктуаций в вакууме. Чаще всего речь идёт о двух параллельных незаряженных зеркальных поверхностях, размещённых… … Толковый англо-русский словарь по нанотехнологии. - М.

    Виртуальные частицы - Виртуальная частица некоторый абстрактный объект в квантовой теории поля, обладающий квантовыми числами одной из реальных элементарных частиц (с массой m), для которого, однако, не выполняется обычная связь между энергией и импульсом (т.е.).… … Википедия

Книги

  • Основы квантовой механики. Нерелятивистская теория , Гинзбург И.Ф. , Пособие составлено на основе многолетнего опыта преподавания автором основного курса квантовой механики и чтения спецкурса Дополнительные главы квантовой механики в Новосибирском… Категория: Физика Серия: Университетские учебники и учебные пособия Издатель:

Лучшие статьи по теме