Для школьников и родителей
  • Главная
  • Здоровье 
  • Как действует водородная бомба и каковы последствия взрыва? Инфографика. Водородная бомба Кто придумал ядерную бомбу

Как действует водородная бомба и каковы последствия взрыва? Инфографика. Водородная бомба Кто придумал ядерную бомбу

12 августа 1953 года в 7.30 утра на Семипалатинском полигоне была испытана первая советская водородная бомба , которая имела служебное название "Изделие РДС‑6c". Это было четвертое по счету советское испытание ядерного оружия.

Начало первых работ по термоядерной программе в СССР относится ещё к 1945 году . Тогда была получена информация об исследованиях, ведущихся в США над термоядерной проблемой. Они были начаты по инициативе американского физика Эдварда Теллера в 1942 году. За основу была взята теллеровская концепция термоядерного оружия, получившая в кругах советских ученых‑ядерщиков название "труба" ‑ цилиндрический контейнер с жидким дейтерием, который должен был нагреваться от взрыва инициирующего устройства типа обычной атомной бомбы. Только в 1950 году американцы установили, что "труба" бесперспективна, и они продолжили разработку других конструкций. Но к этому времени советскими физиками уже была самостоятельно разработана другая концепция термоядерного оружия, которая вскоре ‑ в 1953 году ‑ привела к успеху.

Альтернативную схему водородной бомбы придумал Андрей Сахаров. В основу бомбы им была положена идея "слойки" и применения дейтерида лития‑6. Разработанный в КБ‑11 (сегодня это город Саров, бывший Арзамас‑16, Нижегородская область) термоядерный заряд РДС‑6с представлял собой сферическую систему из слоев урана и термоядерного горючего, окруженных химическим взрывчатым веществом.

Академик Сахаров - депутат и диссидент 21 мая исполняется 90 лет со дня рождения советского физика, политического деятеля, диссидента, одного из создателя советской водородной бомбы, лауреата Нобелевской премии мира академика Андрея Сахарова. Он умер в 1989 году в возрасте 68 лет, семь из которых Андрей Дмитриевич провел в ссылке.

Для увеличения энерговыделения заряда в его конструкции был использован тритий. Основная задача при создании подобного оружия заключалась в том, чтобы с помощью энергии, выделенной при взрыве атомной бомбы, нагреть и поджечь тяжелый водород — дейтерий, осуществить термоядерные реакции с выделением энергии, способные сами себя поддерживать. Для увеличения доли "сгоревшего" дейтерия Сахаров предложил окружить дейтерий оболочкой из обычного природного урана, который должен был замедлить разлет и, главное, существенно повысить плотность дейтерия. Явление ионизационного сжатия термоядерного горючего, ставшее основой первой советской водородной бомбы, до сих пор называют "сахаризацией".

По результатам работ над первой водородной бомбой Андрей Сахаров получил звание Героя Соцтруда и лауреата Сталинской премии.

"Изделие РДС‑6с" было выполнено в виде транспортабельной бомбы весом 7 тонн, которая помещалась в бомбовом люке бомбардировщика Ту‑16. Для сравнения — бомба, созданная американцами, весила 54 тонн и была размером с трехэтажный дом.

Чтобы оценить разрушительные воздействия новой бомбы, на Семипалатинском полигоне построили город из промышленных и административных зданий. В общей сложности на поле имелось 190 различных сооружений. В этом испытании впервые были применены вакуумные заборники радиохимических проб, автоматически открывавшиеся под действием ударной волны. Всего к испытаниям РДС‑6с было подготовлено 500 различных измерительных, регистрирующих и киносъемочных приборов, установленных в подземных казематах и прочных наземных сооружениях. Авиационно‑техническое обеспечение испытаний — измерение давления ударной волны на самолет, находящийся в воздухе в момент взрыва изделия, забор проб воздуха из радиоактивного облака, аэрофотосъемка района осуществлялось специальной летной частью. Подрыв бомбы осуществлялся дистанционно, подачей сигнала с пульта, который находился в бункере.

Было решено произвести взрыв на стальной башне высотой 40 метров, заряд был расположен на высоте 30 метров . Радиоактивный грунт от прошлых испытаний был удален на безопасное расстояние, специальные сооружения были отстроены на своих же местах на старых фундаментах, в 5 метрах от башни был сооружен бункер для установки разработанной в ИХФ АН СССР аппаратуры, регистрирующей термоядерные процессы.

На поле установили военную технику всех родов войск. В ходе испытаний были уничтожены все опытные сооружения в радиусе до четырех километров. Взрыв водородной бомбы мог бы полностью разрушить город в 8 километров в поперечнике. Экологические последствия взрыва оказались ужасающими: на долю первого взрыва приходится 82% стронция‑90 и 75% цезия‑137.

Мощность бомбы достигла 400 килотонн, в 20 раз больше первых атомных бомб в США и СССР.

Уничтожение последнего ядерного заряда в Семипалатинске. Справка 31 мая 1995 г. на бывшем Семипалатинском полигоне был уничтожен последний ядерный заряд. Семипалатинский полигон был создан в 1948 г. специально для проведения испытаний первого советского ядерного устройства. Полигон располагался в северо-восточном Казахстане.

Работа по созданию водородной бомбы стала первой в мире интеллектуальной "битвой умов" поистине мирового масштаба. Создание водородной бомбы инициировало появление совершенно новых научных направлений — физики высокотемпературной плазмы, физики сверхвысоких плотностей энергии, физики аномальных давлений. Впервые в истории человечества было масштабно использовано математическое моделирование.

Работы по "изделию РДС‑6с" создали научно‑технический задел, который затем был использован в разработке несравнимо более совершенной водородной бомбы принципиально нового типа — водородной бомбы двухстадийной конструкции.

Водородная бомба сахаровской конструкции не только стала серьезным контраргументом в политическом противостоянии между США и СССР, но и послужила причиной бурного развития советской космонавтики тех лет. Именно после успешных ядерных испытаний ОКБ Королева получило важное правительственное задание разработать межконтинентальную баллистическую ракету для доставки к цели созданного заряда. В дальнейшем ракета, получившая название "семерка", вывела в космос первый искусственный спутник Земли , и именно на ней стартовал первый космонавт планеты Юрий Гагарин.

Материал подготовлен на основе информации открытых источников

В СССР должна наладиться демократическая форма управления.

Вернадский В.И.

Атомная бомба в СССР была создана 29 августа 1949 года (первый успешный запуск). Руководил проектом академик Игорь Васильевич Курчатов. Период разработки атомного оружия в СССР длился с 1942 года, и закончился испытанием на территории Казахстана. Это нарушило монополию США на подобного рода вооружение, ведь с 1945 года единственной ядерной державой были именно они. Статья посвящена описанию истории возникновения советской ядерной бомбы, а также характеристике последствий этих событий для СССР.

История создания

В 1941 году представители СССР в Нью-Йорке передали Сталину информацию о том, что в США проходит встреча ученых-физиков, которая посвящена вопросам разработки ядерного вооружения. Советские ученые 1930-х годов также работали над исследованием атома, самым известным было расщепление атома учеными из Харькова во главе с Л.Ландау. Однако до реального применения в вооружении дело не доходило. Над этим кроме США работала нацистская Германия. В конце 1941 года в США начали свой атомный проект. Сталин узнал об этом в начале 1942 года и подписал указ о создании в СССР лаборатории по созданию атомного проекта, ее руководителем стал академик И.Курчатов.

Существует мнение, что работу ученых США ускорили секретные разработки немецких коллег, которые попали в Америку. В любом случае, летом 1945 года на Потсдамской конференции новый президент США Г.Трумэн сообщил Сталину о завершении работы над новым оружием – атомной бомбой. Более того, для демонстрации работы американских ученых, правительство США решило испытать новое оружие в бою: 6 и 9 августа бомбы были сброшены на два японских города, Хиросиму и Нагасаки. Это был первый случай, когда человечество узнало о новом оружии. Именно это событие заставило Сталина ускорить работу своих ученых. И.Курчатова вызвал к себе Сталин и пообещал выполнить любые требования ученого, лишь бы процесс шел как можно быстрее. Более того, был создан государственный комитет при Совнаркоме, который курировал советский атомный проект. Возглавил его Л.Берия.

Разработка переместилась в три центра:

  1. Конструкторское бюро Кировского завода, работающее над созданием специального оборудования.
  2. Диффузный завод на Урале, который должен был работать над созданием обогащенного урана.
  3. Химико-металлургические центры, в которых изучали плутоний. Именно этот элемент использовался в первой ядерной бомбе советского образца.

В 1946 году был создан первый советский единый ядерный центр. Это был секретный объект Арзамас-16, находящийся в городе Саров (Нижегородская область). В 1947 году создали первый атомный реактор, на предприятии под Челябинском. В 1948 году был создан секретный полигон на территории Казахстана, возле города Семипалатинск-21. Именно здесь 29 августа 1949 года был организован первый взрыв советской атомной бомбы РДС-1. Это событие держалось в полном секрете, однако американская тихоокеанская авиация смогла зафиксировать резкое повышение уровня радиации, что было доказательством испытания нового оружия. Уже в сентябре 1949 году Г.Трумэн заявил о наличие в СССР атомной бомбы. Официально СССР признался в наличие этого оружия только в 1950 году.

Можно выделить несколько главных последствий успешной разработки советскими учеными атомного оружия:

  1. Потеря США статуса единого государства с атомным оружием. Это не только уравнивало СССР с США по военной мощи, но и заставило последних продумывать каждый свой военный шаг, поскольку теперь нужно было опасаться за ответную реакцию руководства СССР.
  2. Наличие атомного оружия у СССР закрепило за ним статус сверхдержавы.
  3. После уравнивания США и СССР в наличие атомного оружия, началась гонка за его количеством. Государства тратили огромные финансы, чтобы превзойти конкурента. Более того, начались попытки создания еще более мощного оружия.
  4. Эти события послужили стартом ядерной гонки. Многие страны начали вкладывать ресурсы, чтобы пополнить список ядерных государств и обеспечить себе безопасность.

Водородная бомба

Термоя́дерное ору́жие - тип оружия массового поражения , разрушительная сила которого основана на использовании энергии реакции ядерного синтеза легких элементов в более тяжёлые (например, синтеза двух ядер атомов дейтерия (тяжелого водорода) в одно ядро атома гелия), при которой выделяется колоссальное количество энергии . Имея те же поражающие факторы, что и у ядерного оружия , термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва. Это дало основания называть термоядерное оружие «чистым». Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления.

Общее описание

Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях - газ) при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития . Собственно, 6 Li - единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру (порядка 50 млн градусов), в водородной бомбе сначала взрывается небольшая по мощности атомная бомба . Взрыв сопровождается резким ростом температуры, электромагнитным излучением, а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий.

Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию (234), которая и дает основное выделение энергии при взрыве водородной (термоядерной) бомбы. Если корпус бомбы изготовлен из природного урана, то быстрые нейтроны (уносящие 70 % энергии, выделяющейся при реакции (242)) вызывают в нем новую цепную неуправляемую реакцию деления. Возникает третья фаза взрыва водородной бомбы. Подобным образом создается термоядерный взрыв практически неограниченной мощности.

Дополнительным поражающим фактором является нейтронное излучение , возникающее в момент взрыва водородной бомбы.

Устройство термоядерного боеприпаса

Термоядерные боеприпасы существуют как в виде авиационных бомб (водородная или термоядерная бомба ), так и боеголовок для баллистических и крылатых ракет.

История

СССР

Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году (еще до испытания первой советской ядерной бомбы) Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама . В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием («первая идея Сахарова»). Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства (современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз). Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» (первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо»). Мощность взрыва была эквивалентна 400 килотоннам при кпд всего 15 - 20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн.

После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.

В конце 1953 года физик Виктор Давиденко предложил располагать первичный (деление) и вторичный (синтез) заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом («лучевая имплозия»). «Третья идея» Сахарова была проверена в ходе испытаний «РДС-37» мощностью 1.6 мегатонн в ноябре 1955 года. Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.

Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95 . КПД устройства составил почти 97 %, и изначально оно было рассчитано на мощность в 100 мегатонн, урезанных впоследствии волевым решением руководства проекта вдвое. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы.

США

Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году , в самом начале Манхэттенского проекта . Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.

Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам . Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию(обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.

12 августа 1953 года на Семипалатинском полигоне была испытана первая советская водородная бомба.

А 16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. в Москве был подписан договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.

История создания

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Принцип действия водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.



Отцами атомной бомбы обычно называют американца Роберта Оппенгеймера и советского ученого Игоря Курчатова. Но учитывая, что работы над смертоносным велись параллельно в четырех странах и кроме ученых этих стран в них участвовали выходцы из Италии, Венгрии, Дании и т. д., родившаяся в результате бомба по справедливости может быть названа детищем разных народов.

Первыми за дело взялись немцы. В декабре 1938 года их физики Отто Ган и Фриц Штрассман впервые в мире осуществили искусственное расщепление ядра атома урана. В апреле 1939 года в адрес военного руководства Германии поступило письмо профессоров Гамбургского университета П. Хартека и В. Грота, в котором указывалось на принципиальную возможность создания нового вида высокоэффективного взрывчатого вещества. Ученые писали: «Та страна, которая первой сумеет практически овладеть достижениями ядерной физики, приобретет абсолютное превосходство над другими». И вот уже в имперском министерстве науки и образования проводится совещание на тему «О самостоятельно распространяющейся (то есть цепной) ядерной реакции». Среди участников профессор Э. Шуман, руководитель исследовательского отдела Управления вооружений Третьего рейха. Не откладывая, перешли от слов к делу. Уже в июне 1939 года началось сооружение первой в Германии реакторной установки на полигоне Куммерсдорф под Берлином. Был принят закон о запрете вывоза урана за пределы Германии, а в Бельгийском Конго срочно закупили большое количество урановой руды.

Германия начинает и… проигрывает

26 сентября 1939 года, когда в Европе уже полыхала война, было принято решение засекретить все работы, имеющие отношение к урановой проблеме и осуществлению программы, получившей название «Урановый проект». Задействованные в проекте ученые поначалу были настроены весьма оптимистично: они считали возможным создание ядерного оружия в течение года. Ошибались, как показала жизнь.

К участию в проекте были привлечены 22 организации, в том числе такие известные научные центры, как Физический институт Общества Кайзера Вильгельма, Институт физической химии Гамбургского университета, Физический институт Высшей технической школы в Берлине, Физико-химический институт Лейпцигского университета и многие другие. Проект курировал лично имперский министр вооружений Альберт Шпеер. На концерн «ИГ Фарбениндустри» было возложено производство шестифтористого урана, из которого возможно извлечение изотопа урана-235, способного к поддержанию цепной реакции. Этой же компании поручалось и сооружение установки по разделению изотопов. В работах непосредственно участвовали такие маститые ученые, как Гейзенберг, Вайцзеккер, фон Арденне, Риль, Позе, нобелевский лауреат Густав Герц и другие.

В течение двух лет группа Гейзенберга провела исследования, необходимые для создания атомного реактора с использованием урана и тяжелой воды. Было подтверждено, что взрывчатым веществом может служить лишь один из изотопов, а именно - уран-235, содержащийся в очень небольшой концентрации в обычной урановой руде. Первая проблема заключалась в том, как его оттуда вычленить. Отправной точкой программы создания бомбы был атомный реактор, для которого - в качестве замедлителя реакции - требовался графит либо тяжелая вода. Немецкие физики выбрали воду, создав себе тем самым серьезную проблему. После оккупации Норвегии в руки нацистов перешел в то время единственный в мире завод по производству тяжелой воды. Но там запас необходимого физикам продукта к началу войны составлял лишь десятки килограммов, да и они не достались немцам - французы увели ценную продукцию буквально из-под носа нацистов. А в феврале 1943 года заброшенные в Норвегию английские коммандос с помощью бойцов местного сопротивления вывели завод из строя. Реализация ядерной программы Германии оказалась под угрозой. На этом злоключения немцев не кончились: в Лейпциге взорвался опытный ядерный реактор. Урановый проект поддерживался Гитлером лишь до тех пор, пока оставалась надежда получить сверхмощное оружие до конца развязанной им войны. Гейзенберга пригласил Шпеер и спросил прямо: «Когда можно ожидать создания бомбы, способной быть подвешенной к бомбардировщику?» Ученый был честен: «Полагаю, потребуется несколько лет напряженной работы, в любом случае на итоги текущей войны бомба повлиять не сможет». Германское руководство рационально посчитало, что форсировать события не имеет смысла. Пусть ученые спокойно работают - к следующей войне, глядишь, успеют. В итоге Гитлер решил сосредоточить научные, производственные и финансовые ресурсы только на проектах, дающих скорейшую отдачу в создании новых видов оружия. Государственное финансирование работ по урановому проекту было свернуто. Тем не менее работы ученых продолжались.

В 1944 году Гейзенберг получил литые урановые пластины для большой реакторной установки, под которую в Берлине уже сооружался специальный бункер. Последний эксперимент по достижению цепной реакции был намечен на январь 1945 года, но 31 января все оборудование спешно демонтировали и отправили из Берлина в деревню Хайгерлох неподалеку от швейцарской границы, где оно было развернуто только в конце февраля. Реактор содержал 664 кубика урана общим весом 1525 кг, окруженных графитовым замедлителем-отражателем нейтронов весом 10 т. В марте 1945 года в активную зону дополнительно влили 1,5 т тяжелой воды. 23 марта в Берлин доложили, что реактор заработал. Но радость была преждевременна - реактор не достиг критической точки, цепная реакция не пошла. После перерасчетов оказалось, что количество урана необходимо увеличить по крайней мере на 750 кг, пропорционально увеличив массу тяжелой воды. Но запасов ни того ни другого уже не оставалось. Конец Третьего рейха неумолимо приближался. 23 апреля в Хайгерлох вошли американские войска. Реактор был демонтирован и вывезен в США.

Тем временем за океаном

Параллельно с немцами (лишь с небольшим отставанием) разработками атомного оружия занялись в Англии и в США. Начало им положило письмо, направленное в сентябре 1939 года Альбертом Эйнштейном президенту США Франклину Рузвельту. Инициаторами письма и авторами большей части текста были физики-эмигранты из Венгрии Лео Силард, Юджин Вигнер и Эдвард Теллер. Письмо обращало внимание президента на то, что нацистская Германия ведет активные исследования, в результате которых может вскоре обзавестись атомной бомбой.

В СССР первые сведения о работах, проводимых как союзниками, так и противником, были доложены Сталину разведкой еще в 1943 году. Сразу же было принято решение о развертывании подобных работ в Союзе. Так начался советский атомный проект. Задания получили не только ученые, но и разведчики, для которых добыча ядерных секретов стала сверхзадачей.

Ценнейшие сведения о работе над атомной бомбой в США, добытые разведкой, очень помогли продвижению советского ядерного проекта. Участвовавшие в нем ученые сумели избежать тупиковых путей поиска, тем самым существенно ускорив достижение конечной цели.

Опыт недавних врагов и союзников

Естественно, советское руководство не могло оставаться безразличным и к немецким атомным разработкам. По окончании войны в Германию была направлена группа советских физиков, среди которых были будущие академики Арцимович, Кикоин, Харитон, Щелкин. Все были закамуфлированы в форму полковников Красной армии. Операцией руководил первый заместитель наркома внутренних дел Иван Серов, что открывало любые двери. Кроме нужных немецких ученых «полковники» разыскали тонны металлического урана, что, по признанию Курчатова, сократило работу над советской бомбой не менее чем на год. Немало урана из Германии вывезли и американцы, прихватив и специалистов, работавших над проектом. А в СССР, помимо физиков и химиков, отправляли механиков, электротехников, стеклодувов. Некоторых находили в лагерях военнопленных. Например, Макса Штейнбека, будущего советского академика и вице-президента АН ГДР, забрали, когда он по прихоти начальника лагеря изготовлял солнечные часы. Всего по атомному проекту в СССР работали не менее 1000 немецких специалистов. Из Берлина была целиком вывезена лаборатория фон Арденне с урановой центрифугой, оборудование Кайзеровского института физики, документация, реактивы. В рамках атомного проекта были созданы лаборатории «А», «Б», «В» и «Г», научными руководителями которых стали прибывшие из Германии ученые.

Лабораторией «А» руководил барон Манфред фон Арденне, талантливый физик, разработавший метод газодиффузионной очистки и разделения изотопов урана в центрифуге. Поначалу его лаборатория располагалась на Октябрьском поле в Москве. К каждому немецкому специалисту было приставлено по пять-шесть советских инженеров. Позже лаборатория переехала в Сухуми, а на Октябрьском поле со временем вырос знаменитый Курчатовский институт. В Сухуми на базе лаборатории фон Арденне сложился Сухумский физико-технический институт. В 1947 году Арденне удостоился Сталинской премии за создание центрифуги для очистки изотопов урана в промышленных масштабах. Через шесть лет Арденне стал дважды Сталинским лауреатом. Жил он с женой в комфортабельном особняке, жена музицировала на привезенном из Германии рояле. Не были обижены и другие немецкие специалисты: они приехали со своими семьями, привезли с собой мебель, книги, картины, были обеспечены хорошими зарплатами и питанием. Были ли они пленными? Академик А.П. Александров, сам активный участник атомного проекта, заметил: «Конечно, немецкие специалисты были пленными, но пленными были и мы сами».

Николаус Риль, уроженец Санкт-Петербурга, в 1920-е годы переехавший в Германию, стал руководителем лаборатории «Б», которая проводила исследования в области радиационной химии и биологии на Урале (ныне город Снежинск). Здесь с Рилем работал его старый знакомый еще по Германии, выдающийся русский биолог-генетик Тимофеев-Ресовский («Зубр» по роману Д. Гранина).

Получив признание в СССР как исследователь и талантливый организатор, умеющий находить эффективные решения сложнейших проблем, доктор Риль стал одной из ключевых фигур советского атомного проекта. После успешного испытания советской бомбы он стал Героем Социалистического Труда и лауреатом Сталинской премии.

Работы лаборатории «В», организованной в Обнинске, возглавил профессор Рудольф Позе, один из пионеров в области ядерных исследований. Под его руководством были созданы реакторы на быстрых нейтронах, первая в Союзе АЭС, началось проектирование реакторов для подводных лодок. Объект в Обнинске стал основой для организации Физико-энергетического института имени А.И. Лейпунского. Позе работал до 1957 года в Сухуми, затем - в Объединенном институте ядерных исследований в Дубне.

Руководителем лаборатории «Г», размещенной в сухумском санатории «Агудзеры», стал Густав Герц, племянник знаменитого физика XIX века, сам известный ученый. Он получил признание за серию экспериментов, ставших подтверждением теории атома Нильса Бора и квантовой механики. Результаты его весьма успешной деятельности в Сухуми в дальнейшем были использованы на промышленной установке, построенной в Новоуральске, где в 1949 году была выработана начинка для первой советской атомной бомбы РДС-1. За свои достижения в рамках атомного проекта Густав Герц в 1951 году удостоился Сталинской премии.

Немецкие специалисты, получившие разрешение вернуться на родину (естественно, в ГДР), давали подписку о неразглашении в течение 25 лет сведений о своем участии в советском атомном проекте. В Германии они продолжали работать по специальности. Так, Манфред фон Арденне, дважды удостоенный Национальной премии ГДР, занимал должность директора Физического института в Дрездене, созданного под эгидой Научного совета по мирному применению атомной энергии, которым руководил Густав Герц. Национальную премию получил и Герц - как автор трехтомного труда-учебника по ядерной физике. Там же, в Дрездене, в Техническом университете, работал и Рудольф Позе.

Участие немецких ученых в атомном проекте, как и успехи разведчиков, нисколько не умаляют заслуг советских ученых, своим самоотверженным трудом обеспечивших создание отечественного атомного оружия. Однако надо признать, что без вклада тех и других создание атомной промышленности и атомного оружия в СССР растянулось бы на долгие годы.


Little Boy
Американская урановая бомба, разрушившая Хиросиму, имела пушечную конструкцию. Советские атомщики, создавая РДС-1, ориентировались на «бомбу Нагасаки» - Fat Boy, выполненную из плутония по имплозионной схеме.


Манфред фон Арденне, разработавший метод газодиффузионной очистки и разделения изотопов урана в центрифуге.


Операция Crossroads - серия тестов атомной бомбы, проведенная США на атолле Бикини летом 1946 года. Целью было испытать эффект атомного оружия на кораблях.

Помощь из-за океана

В 1933 году немецкий коммунист Клаус Фукс бежал в Англию. Получив в Бристольском университете диплом физика, он продолжал работать. В 1941 году Фукс сообщил о своем участии в атомных исследованиях агенту советской разведки Юргену Кучинскому, который проинформировал советского посла Ивана Майского. Тот поручил военному атташе срочно установить контакт с Фуксом, которого в составе группы ученых собирались переправить в США. Фукс согласился работать на советскую разведку. В работе с ним были задействованы многие советские разведчики-нелегалы: супруги Зарубины, Эйтингон, Василевский, Семенов и другие. В результате их активной деятельности уже в январе 1945 года СССР имел описание конструкции первой атомной бомбы. При этом советская резидентура в США сообщила, что американцам потребуется минимум один год, но не более пяти лет для создания существенного арсенала атомного оружия. В сообщении также говорилось, что взрыв первых двух бомб, возможно, будет произведен уже через несколько месяцев.

Пионеры деления ядер


К. А. Петржак и Г. Н. Флеров
В 1940 году в лаборатории Игоря Курчатова двумя молодыми физиками был открыт новый, очень своеобразный вид радиоактивного распада атомных ядер - спонтанное деление.


Отто Ган
В декабре 1938 года немецкие физики Отто Ган и Фриц Штрассман впервые в мире осуществили искусственное расщепление ядра атома урана.

Лучшие статьи по теме