Для школьников и родителей
  • Главная
  • Планета Земля
  • Горение сложный физико химический процесс. Физико-химические основы процессов горения и взрывов. Условия возникновения и виды горения. Классификация процессов горения

Горение сложный физико химический процесс. Физико-химические основы процессов горения и взрывов. Условия возникновения и виды горения. Классификация процессов горения

Оригинальный документ ?

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ ГОРЕНИЯ

Химические процессы при горении. Природа горючих веществ. Лекция 3

Пожаровзрывоопасностъ веществ и материалов - это совокупность свойств, характеризующих их способность к возникновению и распростране­нию горения.

Следствием горения в зависимости от его скорости и условий протека­ния может быть пожар или взрыв.

Пожаровзрывоопасность веществ и материалов характеризуется пока­зателями, выбор которых зависит от агрегатного состояния вещества (мате­риала) и условий его применения.

При определении пожаровзрывоопасности веществ и материалов раз­личают следующие агрегатные состояния:

газы - вещества, давление насыщенных паров которых при нормаль­ных условиях (25°С и 101325 Па) превышает 101325 Па;

жидкости - вещества, давление насыщенных паров которых при нор­мальных условиях (25°С и 101325 Па) меньше 101325 Па. К жидкостям отно­сятся также твердые плавящиеся вещества, температура плавления или каплепадения которых ниже 50°С ;

твердые вещества и материалы - индивидуальные вещества и их сме­совые композиции с температурой плавления каплепадения выше 50°С , а также вещества, не имеющие температуру плавления (например, древесина, ткани, торф;

пыли - диспергированные вещества и материалы с размером частиц менее 850 мкм.

Горение как химическая реакция окисления веществ с участием кислорода

Горение - один из первых сложных физико-химических процессов, с которым человек встретился еще на заре своего развития. Процесс, овладев которым, он получил огромное превосходство над окружающими его живы­ми существами и силами природы.

Горение - одна из форм получения и преобразования энергии, основа многих технологических процессов производства. Поэтому человек постоян­но изучает и познает процессы горения.

История науки о горении начинается с открытия М.В. Ломоносова: "Горение есть соединение вещества с воздухом". Это открытие послужило основанием для открытия закона сохранения массы веществ пр и их физических и химических превращениях. Лавуазье уточнил определение процесса горения "Горение есть соединение вещества не с воздухом, а с кислородом воздуха".

В дальнейшем существенный вклад в изучение и развитие науки горении внесли советские и российские ученые А.В. Михельсон , Н.Н. Семенов, Я.В. Зельдовия , Ю.Б. Харитон, И.В. Блинов и др.

В основе процесса горения лежат экзотермические окислительно-восстановительные реакции, которые подчиняются законам химической кинетики, химической термодинамики и другим фундаментальным законам (закону сохранения массы, энергии и т.д.).

Горением называется сложный физико-химический процесс, при котором горючие вещества и материалы под воздействием высоких температур вступают в химическое взаимодействие с окислителем (кислоро­дом воздуха), превращаясь в продукты горения, и который сопровождается интенсивным выделением тепла и световым свечением.

В основе процесса горения лежит химическая реакция окисления, т.е. соединения исходных горючих веществ с кислородом. В уравнениях химиче­ских реакций горения учитывают и азот, который содержится в воздухе, хотя в реакциях горения не участвует. Состав воздуха условно принимают посто­янным , содержащим 21 % по объему кислорода и 79 % азота (в весовых со­ответственно 23 % и 77 % азота), т.е. на 1 объем кислорода приходится 3.76 объема азота. Или на 1 моль кислорода приходится 3.76 моль азота. Тогда, например, реакцию горения метана в воздухе можно записать так:

СН 4 + 2О 2 + 2 ´ 3.76 N 2 = СО 2 + 2Н 2 О + 2 ´ 3.76 N 2

Азот в уравнениях химических реакций учитывать необходимо потому, что он поглощает часть тепла, выделяемого в результате реакций горения, и вхо­дит в состав продуктов горения - дымовых газов.

Рассмотрим процессы окисления.

Окисление водорода осуществляется по реакции:

Н 2 + 0.5О 2 = Н 2 О.

Экспериментальные данные о реакции между водородом и кислородом много­численны и разнообразны. В любом реальном (высокотемпературном) пла­мени в смеси водорода и кислорода, возможно образование радикала * ОН или атомов водорода Н и кислорода О , которые инициируют окисление во­дорода до паров воды.

Горение углерода . Углерод, образующийся в пламенах , может быть газооб­разным, жидким или твердым. Его окисление независимо от агрегатного со­стояния происходит за счет взаимодействия с кислородом. Горение может быть полным или неполным, что определяется содержанием кислорода:

С + О 2 = СО 2 (полное) 2С + О 2 = 2СО (неполное)

Гомогенный механизм не исследован (углерод в газообразном состоянии). Взаимодействие углерода в твер­дом состоянии наиболее изучено. Этот процесс схематически можно пред­ставить из следующих этапов:

1. доставка окислителя (О 2 ) к поверхности раздела фаз путем молекулярной и конвективной диффузии;

2. физическая адсорбция молекул окислителя;

3. взаимодействие адсорбированного окислителя с поверхностными атомами углерода и образование продуктов реакции;

4.десорбция продуктов реакции в газовую фазу.

Горение окиси углерода . Суммарная реакция горения окиси углерода запишется СО + 0.5О 2 = СО 2 , хотя окисление монооксида углерода имеет более сложный механизм Основные закономерности горения окиси углерода можно объяснить на ос­новании механизма горения водорода, включая в него реакции взаимодейст­вия окиси углерода с образующимся в системе гидрооксидом и атомным ки­слородом, т.е. процесс этот многостадийный:

* ОН + СО = СО 2 + Н;О + СО = СО 2

Прямая реакция СО + О 2 -> СО 2 маловероятна, так как реальные сухие смеси СО и О 2 характеризуются чрезвычайно низкими скоростями горения или не могут воспламениться вообще.

Окисление простейших углеводородо в. Метан горит с образованием диоксида углерода и паров воды:

СН 4 + О 2 = СО 2 + 2Н 2 О.

Но этот процесс на самом деле включает в себя целый ряд реакций, в которых участвуют моле­кулярные частицы с высокой химической активностью (атомы и свободные радикалы): * СН 3 , * Н, * ОН. Хотя эти атомы и радикалы существуют в пламени короткое время, они обеспечивают быстрый расход горючего. В процессе го­рения природного газа возникают комплексы углерода, водорода и кислоро­да, а также комплексы углерода и кислорода, при разрушении которых обра­зуются СО, СО 2 , Н 2 О. Предположительно схему горения метана можно запи­сать так:

СН 4 → С 2 Н 4 →С 2 Н 2 →углеродистые продукты+О 2 → C x U y O z CO , СО 2 ,Н 2 О.

Термическое разложение, пиролиз твердых веществ

При повышении температуры твердого горючего материала происхо­дит разрыв химических связей с образованием более простых компонентов (твердых, жидких, газообразных). Этот процесс называется термическим раз­ложением или пиролизом . Термическое разложение молекул органических соединений происходит в пламени, т.е. при повышенных температурах вбли­зи поверхности горения. Закономерности разложения зависят не только от горючего, но и от температуры пиролиза, скорости ее изменения, размеров образца, его формы, степени распада и т.д.

Рассмотрим процесс пиролиза на примере наиболее распространенного твердого горючего материала - древесины.

Древесина представляет собой смесь большого количества веществ различного строения и свойств. Основными ее компонентами являются гемицеллюлоза (25 %), целлюлоза (50 %), лигнин (25 %). Гемицеллюлоза со­стоит из смеси пентазанов (С 5 Н 8 О 4), гексазанов (С 6 Н 10 О 5), полиуронидов . Лигнин имеет ароматическую природу и содержит связанные с ароматиче­скими кольцами углеводы. В среднем древесина содержит 50 % С , 6 % Н, 44 % О. Это пористый материал, объем пор в котором достигает 50 - 75 %. Наи­менее термостойким компонентом древесины является гемицеллюлоза (220 - 250°С), наиболее термостойким компонентом - лигнин (интенсивное его разложение наблюдается при температуре 350 - 450°С). Итак, разложение древесины состоит из следующих процессов:

пп

Температура,°С

Характеристика процессов

до 120 - 150

сушка, удаление физически связанной воды

150 - 180

Разложение наименее стойких компонентов (лумино-вых кислот) с выделением СО 2 , Н 2 О

250 - 300

пиролиз древесины с выделением СО, СН 4 , Н 2 , СО 2 , Н 2 О и т.д.; образующаяся смесь способна воспламе­няться от источника зажигания

350 - 450

Интенсивный пиролиз с выделением основной массы горючих веществ (до 40 % от всей массы); газообраз­ная смесь состоит из 25 % Н 2 и 40 % предельных и ненасыщенных углеводородов; обеспечивается мак­симальная поставка летучих компонентов в зону пла­мени; процесс на этой стадии экзотермический; коли­чество тепла, которое выделяется, достигает 5 - 6 % от низшей теплоты сгорания Q ≈ 15000 кДж/кг

500 - 550

Скорость термического разложения резко снижается; выход летучих компонентов прекращается (конец пи­ролиза); при 600 °С выделение газообразных продук­тов прекращается

Аналогично древесине протекает пиролиз каменного угля, торфа. Од­нако выход летучих у них наблюдается при других температурах. Каменный уголь состоит их более твердых термостойких углеродсодержащих компо­нентов, и разложение его протекает менее интенсивно и при более высоких температурах (рис.1).

Горение металлов

По характеру горения металлы делятся на две группы: летучие и неле­тучие. Летучие металлы имеют Т пл . < 1000 K и Т кип . < 1500 K . К ним относятся щелочные металлы (литий, натрий, калий) и щелочноземельные (магний, кальций). Горение металлов осуществляется следующим образом: 4 Li + О 2 = 2 Li 2 O . Нелетучие металлы имеют Т пл . > 1000 K и Т кип . > 2500 K .

Механизм горения во многом определяется свойствами оксида металла. Температура летучих металлов ниже температуры плавления их оксидов. При этом последние представляют собой достаточно пористые образования. При поднесении искры зажигания к поверхности металла происходит его испарение и окисление.

При достижении концентрации паров, равной нижнему концентрационному пределу воспламенения, происходит их воспламенение. Зона диффузионного горения устанавливается у поверхности, большая доля тепла передается металлу, и он нагревается до температуры кипения.

Образующиеся пары, свободно диффундируя через пористую оксидную пленку, поступают в зону горения. Кипение металла вызывает периодическое разрушение оксидной пленки, что интенсифицирует горение. Продукты горения (оксиды металлов) диффундируют не только к поверхности металла, способствуя образованию корки оксида металла, но и в окружающее пространство, где, конденсируясь, образуют твердые частицы в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазово­го перехода, при горении на поверхности образуется весьма плотная оксидная пленка, которая хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, например, алюминия или бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они вводятся в виде стружки, порошков, аэрозолей. Их горение происходит без образования плотного дыма. Образование плотной оксидной пленки на поверхности металла приводит к взрыву частицы. Это явление особенно, часто наблюдающееся при движении частицы в высокотемпера­турной окислительной среде, связывают с накоплением паров металлов под оксидной пленкой с последующим внезапным ее взрывом. Это естественно приводит к резкой интенсификации горения.

Горение пылей

Пыль - это дисперсная система, состоящая из газообразной дисперсной среды (воздух) и твердой фазы (мука, сахар, древесина, уголь и т.д.).

Распространение пламени по пыли происходит за счет прогрева холодной смеси лучистым потоком от фронта пламени. Твердые частицы, поглощая тепло от лучистого потока, нагреваются, разлагаются с выделением горючих продуктов, которые образуют горючие смеси с воздухом.

Аэрозоль, имеющая очень мелкие частицы, при воспламенении быстро сгорает в зоне воздействия источника зажигания. Однако толщина зоны пламени настолько мала, что интенсивность его излучения оказывается недостаточной для разложения частиц, и стационарного распространения пламени по таким частицам не происходит.

Аэрозоль, содержащая крупные частицы, также неспособна к стационарному горению. С увеличением размера частиц снижается удельная поверхность теплообмена, и возрастает время их прогрева до температуры разложения.

Если время образования горючей паровоздушной смеси перед фронтом пламени за счет разложения частичек твердого материала больше времени существования фронта пламени, то горение происходить не будет.

Факторы, влияющие на скорость распространения пламени по пылевоздушным смесям:

1. концентрация пыли (максимальная скорость распространения пламени имеет место для смесей несколько выше стехиометрического состава, например, для торфяной пыли при концентрации 1 - 1.5 кг/м 3);

2.зольность (при увеличении зольности уменьшается концентрация горючего компонента и уменьшается скорость распространения пламени);

Классификация пыли по взрывопожарной опасности:

I класс - наиболее взрывоопасная пыль (концентрация до 15 г/м 3);

II класс - взрывоопасная до 15-65 г/м 3

III класс - наиболее пожароопасная > 65 г/м 3 Т св ≤ 250°С;

IV класс - пожароопасная > 65 г/м 3 Т св > 250°С.

Бескислородное горение

Существует ряд веществ, которые при повышении их температуры выше определенного уровня претерпевают химическое разложение, приводя­щее к свечению газа, едва отличимому от пламени. Пороха и некоторые синтетические материалы могут гореть без доступа воздуха или в нейтральной среде (в чистом азоте).

Горение целлюлозы (звено - С 6 Н 7 О 2 (ОН) 3 - ) можно представить в виде внут­ренней окислительно-восстановительной реакции в молекуле, содержащей атомы кислорода, которые могут реагировать с углеродом и водородом целлюлозного звена.

Пожар, в котором участвует нитрат аммония, может поддерживаться без подвода кислорода. Эти пожары вероятны при большом содержании нит­рата аммония (около 2000 т) в присутствии органического вещества, в част­ности, бумажных пакетов или упаковочных мешков.

В качестве примера можно привести аварию в 1947 г. Судно “ Grandcamp ” назодилось в порту Техас-Сити с грузом около 2800 т нитрата аммония. Пожар возник в грузовом отсеке с нитратом аммония, упакованном в бумажные мешки. Капитан судна принял решение не гасить огонь водой, чтобы не испортить груз, и пытался ликвидировать пожар, задраив палубные люки и впуская пар в грузовой отсек. Такие меры способствуют ухудшению ситуации, усиливая пожар без доступа воздуха, поскольку происходит подогрев нитрата аммония. Пожар начался в 8 часов утра, а в 9 час. 15 мин.п роизошел взрыв. В результате погибло более 200 человек, столпившихся в порту и наблюдавших за пожаром, в том числе команда судна и экипаж двух самолетов из 4 человек, облетавших судно.

В 13 час 10 мин следующего дня на другом судне, транспортировавшем нитрат аммония и серу, которое загорелось от первого судна накануне, также произошел взрыв.

Маршалл описывает пожар, возникший вблизи Франкфурта в 1961 г. Самопроизвольное термическое разложение, вызванное лентой транспортера, привело к загоранию 8.. т удобрений, треть этого количества составлял нитрат аммония, а остальное - инертные вещества, используемые в качестве удобрений. Пожар продолжался 12 часов. В результате пожара выделялось большое количество ядовитых газов, в состав которых входил азот.

Горением называется физико-химический процесс, сопровождающийся выделением теплоты и излучением света. Горением может быть всякая экзотермическая химическая реакция как соединения веществ, так и их разложения. Например, взрыв ацетилена - это реакция его разложения.

Для процесса горения необходимы определенные условия: горючее вещество, способное самостоятельно гореть после удаления источника зажигания, воздух (кислород), а также источник воспламенения, обладающий определенной температурой и достаточным запасом теплоты. Если одно из этих условий отсутствует, процесса горения не будет.

Горючее вещество может находиться в любом агрегатном состоянии (твердом, жидком, газообразном). Источником воспламенения может быть пламя, искра, накаленное тело и теплота, выделяющаяся в результате химической реакции, при механической работе, от электрической дуги между проводниками и т. д.

После возникновения горения постоянным источником воспламенения является зона горения, т. е. область, где происходит реакция с выделением теплоты и света. Горение возможно при определенном количественном соотношении горючего вещества и окислителя. Например, при пламенном горении веществ в воздухе зоны горения концентрация кислорода должна быть не ниже 16-18%.Горение прекращается при снижении содержания кислорода в воздухе ниже 10%. Однако тление может происходить и при содержании в воздухе 3% кислорода.

Исключением являются вещества в основном взрывчатые, горение которых происходит благодаря окислителям, входящим в их состав. Молекулы таких веществ, как хлораты, нитраты, хроматы, окиси, перекиси и другие, содержат свободные атомы кислорода. При нагревании, а иногда и при соприкосновении с водой эти вещества выделяют кислород, который поддерживает горение.

Взрыв - это частный случай горения, при котором мгновенно выделяется большое количество теплоты и света. Образующиеся при этом газы, быстро расширяясь, создают огромное давление на окружающую среду, в которой возникает сферическая воздушная волна, движущаяся с большой скоростью. При определенных условиях опасность взрыва могут представлять смеси газов, паров и пыли с воздухом. Условия для возникновения взрыва - это наличие определенной концентрации газо-, пыле- или паровоздушной смеси и импульса (пламя, искра, удар), способного нагреть смесь до температуры самовоспламенения.

Горение - это сложный химический процесс, который может протекать не только при окислении веществ кислородом, но и при соединении их с многими другими веществами. Например, фосфор, водород, измельченное железо (опилки) горят в хлоре, карбиды щелочных металлов воспламеняются в атмосфере хлора и двуокиси углерода, медь горит в парах серы и т. д.

Разные по химическому составу вещества горят неодинаково. Например, воспламеняющиеся жидкости выделяют теплоту в 3-10 раз быстрее, чем дерево, поэтому обладают высокой пожароопасностью. Независимо от первоначального агрегатного состояния большинство горючих веществ при нагревании переходит в газообразную фазу и, смешиваясь с кислородом воздуха, образует горючую среду. Этот! процесс называется пиролизом. При горении веществ выделяются углекислый газ, окись углерода и дым. Дым представляет собой смесь мельчайших твердых частиц веществ - продуктов горения (угля, золы). Углекислый газ, или углекислота, является инертным газом. При значительной концентрации его в помещении (8-10% по объему) человек теряет сознание и может умереть от удушья. Окись углерода - бесцветный газ без запаха, обладающий сильным отравляющим свойством. При объемной доле окиси углерода в воздухе помещения от 1 % и выше почти мгновенно наступает смерть.

Пожароопасные свойства горючих веществ определяются рядом характерных показателей.

Вспышка - это быстрое сгорание смеси паров вещества с воздухом при поднесении к ней открытого огня. Самая низкая температура горючего вещества, при которой над его поверхностью образуются пары или газы, способные вспыхивать в воздухе от внешнего источника зажигания, называется температурой вспышки. Температура вспышки, определяемая в условиях специальных испытаний, является показателем, ориентировочно определяющим тепловой режим, при котором горючее вещество становится опасным.

Воспламенением называют горение, возникающее под воздействием источника зажигания и сопровождающееся появлением пламени. Температура горючего вещества, при которой после воспламенения возникает устойчивое горение, называется температурой воспламенения.

Самовоспламенением называют возгорание вещества без подведения к нему источника зажигания, сопровождающееся появлением пламени. Самая низкая температура, при которой начинается этот процесс, т. е. когда медленное окисление переходит в горение, называется температурой самовоспламенения. Эта температура значительно выше температуры воспламенения вещества.

Способность некоторых веществ, называемых пирофорными (растительные продукты, уголь, сажа, промасленная ветошь, различные предметы судового снабжения и т. д.), самовозгораться при тепловых, химических или микробиологических процессах учитывается при разработке пожарно-профилактических мероприятий.

Физико-химические свойства всех опасных веществ, способных самовозгораться при смешивании одного с другим, при контакте вещества с другими активными веществами, и другие сведения изложены в Правилах морской перевозки опасных грузов (МОПОГ), которые используются в морской практике. При перевозке опасных грузов все члены экипажа инструктируются по соблюдению мер предосторожности при обращении: с конкретными перевозимыми веществами.

Интенсивность горения зависит и от физического состояния вещества. Измельченные и распыленные вещества горят более интенсивно, чем массивные или плотные.

Промышленная пыль представляет значительную пожарную опасность. Она имеет большую площадь поверхности и электроемкость, поэтому обладает свойством приобретать заряды статического электричества в результате движения, трения и ударов пылинок одна о другую, а также о частицы воздуха. Поэтому при обработке сыпучих грузов необходимо принимать противопожарные меры согласно инструкциям.

По степени возгораемости все вещества и материалы разделяются на четыре категории: несгораемые, трудновозгораемые, трудновоспламеняемые (самозатухающие) и сгораемые.

Воспламеняющиеся жидкости условно подразделяются на три разряда в зависимости от температуры вспышки, определяемой в условиях специальных лабораторных испытаний: I - имеющие температуру вспышки паров ниже + 23°С; II - имеющие тем-лературу вспышки паров в диапазоне от +23 до +60°С; III - имеющие температуру вспышки паров выше +60°С.

Воспламеняющиеся жидкие грузы подразделяются на легко воспламеняющиеся жидкости (ЛВЖ) и горючие жидкости (ГЖ).

Легко воспламеняющиеся жидкости в свою очередь разделяются на три категории в зависимости от температуры вспышки и пожароопасности: особо опасные, постоянно опасные, опасные при повышенной температуре воздуха.

Упрощённо под горением понимают быстропротекающий экзотермический процесс окисления веществ кислородом воздуха с выделением значительного количества тепла и излучением света.

Горение представляет собой сложный физико-химический процесс взаимодействия горючего вещества и окислителя, а также разложения некоторых веществ, характеризующийся самоускоряющимся превращением с выделением большого количества тепла и излучением света. Обычно в качестве окислителя в этом процессе участвует кислород воздуха с концентрацией 21 об. % . Для возникновения и развития процесса горения необходимы горючее вещество, окислитель и источник воспламенения, инициирующий определённую скорость химической реакции между горючим и окислителем.

Горение, как правило, происходит в газовой фазе, поэтому горючие вещества, находящиеся в конденсированном состоянии (жидкости и твёрдые вещества), для возникновения и поддержания горения должны подвергаться газификации (испарению, разложению). Горение отличается многообразием видов и особенностей, обусловливаемых процессами тепломассообмена, газодинамическими факторами, кинетикой химических реакций и другими факторами, а также обратной связью между внешними условиями и характером развития процесса.

2.4.2.1. Классификация процессов горения.

Горение может быть гомогенным и гетерогенным в зависимости от агрегатного состояния горючих веществ и окислителя.

Гомогенное горение протекает в том случае, когда реагирующие компоненты горючей смеси имеют одинаковое агрегатное состояние. Гомогенное горение может быть кинетическим и диффузионным в зависимости от условий смесеобразования горючих компонентов и от соотношения скоростей химических реакций и смесеобразования. Тот или иной режим горения реализуется, например, при пожаре, в зависимости от того, какая из стадий процесса горения является лимитирующей: скорость смесеобразования или скорость химических реакций.

Кинетическим является горение предварительно перемешанных газо- или паровоздушных смесей (лимитирующая стадия процесса – скорость химических реакций), которое часто имеет взрывной характер (если смесь образуется в замкнутом пространстве), т.к. выделяющаяся при этом энергия не успевает отводиться за пределы этого пространства. Кинетическое горение может быть и спокойным, если горючая смесь предварительно создается в малом, незамкнутом пространстве с непрерывной подачей горючего в зону горения.

Диффузионный режим горения реализуется при создании горючей смеси непосредственно в зоне горения, когда окислитель поступает в неё за счет процессов диффузии, например, при гетерогенном горении.

Гетерогенное горение осуществляется при различных агрегатных состояниях горючего вещества и окислителя. В гетерогенном горении важную роль играет интенсивность потока паров, образующихся из конденсированных горючих веществ (жидкости, твёрдые вещества) в реакционную зону.

С газодинамических позиций горение может быть ламинарным и турбулентным .

Ламинарный режим процесса горения осуществляется в том случае, когда компоненты горючей смеси поступают в зону реакции при малых значениях критерия Рейнольдса (0 < R e < 200), т.е. в основном за счёт молекулярной диффузии. Процесс характеризуется малыми скоростями газовыхпотоков горючего и окислителя и послойным распространением реакционной зоны (фронта пламени) в пространстве. Скорость горения в этом случае зависит от скорости образования горючей смеси.

Турбулентный режим процесса реализуется тогда, когда компоненты горючей смеси поступают в зону реакции при больших значениях критерия Рейнольдса (230 < R e < 10000). Горение в этом режиме происходит при увеличении скорости газовыхпотоков , когда нарушается ламинарность их движения. В турбулентном режиме горения завихрение газовых струй улучшает перемешивание реагирующих компонентов, при этом увеличивается площадь поверхности, через которую происходит молекулярная диффузия, результатом чего является увеличение скорости распространения пламени в пространстве.

По скорости распространения пламени в пространстве горение делится на:

дефлаграционное (скорость распространения пламени несколько м/с );

взрывное (скорость распространения пламени десятки и сотни м/с , но не более скорости распространения звука в воздухе (344 м/с ));

детонационное (скорость распространения пламени больше скорости звука в воздухе).

В зависимости от глубины протекания химических реакций горение может быть полным и неполным .

При полном горении реакция протекает до конца, т.е. до образования веществ, неспособных далее взаимодействовать друг с другом, с горючим и окислителем (исходное соотношение горючего вещества и окислителя при этом называется стехиометрическим ). В качестве примера рассмотрим полное горение метана, протекающее по реакции

CH 4 + 2O 2 = CO 2 + 2H 2 O + Q

Где Q – теплота, выделяющаяся в результате протекания экзотермической реакции, Дж .

При полном горении углеводородов продуктами реакции являются углекислый газ и вода, т. е. нетоксичные и негорючие вещества. Полное горение может реализоваться как при стехиометрическом соотношении горючего и окислителя, так и при избытке окислителя по отношению к его стехиометрическому содержанию в горючей смеси.

Неполное горение характеризуется незавершённостью химической реакции, т.е. продукты реакции при наличии окислителя могут далее взаимодействовать с ним. Происходит неполное горение при недостаточном (по сравнению со стехиометрическим) содержании окислителя в горючей смеси. В результате неполного горения, например, углеводородов, происходит образование токсичных и горючих компонентов таких, как CO , H 2 , бензпирен, С (сажа), органические смолы и др., всего около 300 химических соединений и элементов.

При прочих равных условиях при полном горении развиваются более высокие температуры, нежели при неполном.

2.4.2.2. Основные механизмы процессов горения.

Горение сопровождается выделением тепла и излучением света и возникает в условиях прогрессивного самоускорения процесса, связанного с накоплением в системе тепла (тепловое горение ) или катализирующих активных промежуточных продуктов реакции (цепное горение ).

Тепловое горение возможно при экзотермической реакции, скорость которой быстро возрастает под влиянием накапливающегося в системе тепла, приводящего к повышению температуры. При достижении температуры, при которой приход тепла от реакции превышает тепловые потери в окружающую среду, происходит саморазогрев системы, заканчивающийся самовоспламенением горючей смеси. В этих условиях наблюдается спонтанное развитие реакции, сопровождаемой нагревом образующихся продуктов до такой температуры, при которой они начинают излучать свет (более 900 °С ). К тепловому горению относятся процессы и с участием кислорода воздуха, и без него (разложение взрывчатых веществ, озона, ацетилена, пероксидов (например, Н 2 О 2), взаимодействие некоторых металлов с галогенами, серой и др.).

Цепное горение возможно только при реакциях, для которых основой воспламенения или взрыва является цепной процесс. Последний сопровождается образованием неустойчивых промежуточных продуктов реакции, регенерирующих активные центры (атомы и молекулы, имеющие свободные химические связи), которые ускоряют процесс. Накопление достаточного количества активных центров способствует переходу цепного процесса в тепловой и возрастанию температуры смеси до точки её самовоспламенения. Возникают такие активные центры в результате повышения скорости теплового колебательного движения молекул, а приумножаются за счёт разветвления цепей. На начальных стадиях реакций, протекающих по цепному механизму, химическая энергия реагирующих веществ переходит в основном в образование новых активных центров. Процесс изменения концентрации активных центров описывается уравнением:

где n – число активных центров в зоне реакции;

τ – время;

w 0 – скорость зарождения активных центров;

φ – константа, характеризующая разность скоростей разветвления и обрыва цепей.

С позиций молекулярно-кинетической теории (МКТ) строения материи химические реакции горения происходят в результате взаимодействия молекул горючего и окислителя. Силы молекулярного взаимодействия между двумя компонентами горючей смеси проявляются на очень малом расстоянии, а с увеличением последнего резко убывают. Поэтому взаимодействие между молекулами горючего и окислителя возможно лишь при полном их сближении, которое можно рассматривать как соударение. Следовательно, химической реакции между горючим и окислителем должны предшествовать смешение компонентов и физический акт упругого соударения молекул.

Число соударений молекул газа в единице объёма легко рассчитывается. Так, например, для стехиометрической смеси водорода и кислорода (2Н 2 + О 2) при температуре 288 К и атмосферном давлении (~ 101325 Па ) число соударений за 1 с в 1 см 3 достигает 8,3·10 28 . Если бы все эти соударения приводили к химической реакции, то вся смесь прореагировала бы очень быстро. Практика же показывает, что в этих условиях реакция горения не протекает вообще, т.к. все эти соударения не приводят к химическому взаимодействию.

Для того чтобы химическая реакция произошла, реагирующие молекулы должны находиться в возбуждённом состоянии. Такое возбуждение может быть химическим, когда атомы молекул обладают одной или двумя свободными валентностями (такие молекулы называются радикалами и обозначаются, например, СН 3 , ОН , СН 2 и т.п.) и физическим когда в результате медленного нагревания молекулы приобретают кинетическую энергию выше критического значения.

Молекулы, обладающие необходимым запасом энергии для разрыва или ослабления существующих связей, называются активными центрами химической реакции.

Разность между средними уровнями запаса энергии молекул в активном состоянии и находящихся в нормальном, т.е. неактивном, невозбуждённом состоянии, называется энергией активации (Е а ). Чем выше численное значение энергии активации, тем труднее заставить данную пару реагентов вступить в химическую реакцию и наоборот. Поэтому энергия активации является как бы косвенным показателем степени пожарной опасности горючих веществ.

Оценить величину энергии активации можно по формуле:

где Е а – энергия активации, Дж ;

k – постоянная Больцмана, равная 1,38·10 –23 Дж/К ;

Т – абсолютная температура, К .

Характер протекания основного химического процесса горения зависит от ряда физических процессов:

– передвижения реагирующих веществ и продуктов реакции (процессы диффузии);

– выделения и распространения тепла (процессы теплопередачи);

– аэро- и гидродинамических условий, обеспечивающих перенос тепла и вещества (процессы конвекции).

Необходимость учёта этих факторов значительно усложняет изучение и теоретическое описание процессов горения.

Горение твёрдых веществ, не образующих при нагревании газовой (паровой) фазы, является гетерогенным и протекает на поверхности раздела фаз, поэтому наряду с рассмотренными выше факторами, влияющими на характер процесса, исключительно важную роль играют размеры и природа поверхности твёрдой фазы (это особенно важно для аэрозолей).

2.4.2.3. Импульсы воспламенения.

Для возникновения горения кроме горючего вещества и окислителя необходим начальный энергетический импульс (чаще всегос выделением тепла), который вызывает воспламенение небольшого объёма горючей смеси, после чего горение распространяется по всему пространству, в котором она распределена.

Импульс воспламенения может возникнуть при протекании физических, химических и микробиологических процессов, способствующих образованию тепла. В зависимости от характера этих процессов импульсы соответственно и подразделяются на физические , химические , и микробиологические.

Так как при воздействии на систему физического импульса выделяется тепло, не являющееся результатом химического процесса, то этот импульс рассматривается как тепловой. Действие теплового импульса, вызывающего нагревание системы, может быть:

контактным – передача тепла осуществляется за счёт соприкосновения горючей смеси с его источником;

радиационным – передача тепла горючей смеси происходит электромагнитным излучением от источника нагрева;

конвекционным – передача тепла горючей системе происходит веществом (воздухом или иным газом, находящимся в движении);

гидравлическим (динамическим) – образование тепла за счёт быстрого уменьшения объёма газовой смеси, сопровождающегося повышением давления последней.

Основными источниками теплового импульса являются:

– открытое пламя (температура ~ 1500 °С );

– нагретые поверхности (температура > 900 °С );

– механические искры (температура ~ 1200 °С )

– электрические искры (температура до 6000 °С ).

При химическом и микробиологическом импульсах накопление тепла в системе происходит за счёт химической реакции, физико-химического процесса (например, адсорбции) и жизнедеятельности микроорганизмов, для которых горючее вещество является пищей.

2.4.2.4. Скорость реакций горения.

Скорость процесса горения в общем виде определяется по уравнению:

где а , b – концентрации реагирующих компонентов;

τ – время,

где m, n – концентрации продуктов горения.

Повышение скорости горения сопровождается увеличением количества тепла, поступающего в систему в единицу времени, и, как следствие, ростом температуры горения.

2.4.2.5. Температура горения.

При горении не всё выделенное тепло тратится на повышение температуры реакционной смеси, т. к. часть его расходуется в виде потерь на:

– химический и физический недожог, учитываемый коэффициентом недожога (β );

– электромагнитное излучение пламени, зависящее от температуры излучающего тела, его агрегатного состояния и химической природы. Эта зависимость определяется коэффициентом черноты излучающего тела(ε ) и длиной волны электромагнитного излучения;

– кондуктивно-конвективные потери.

Исходя из этого, в процессах горения различают 3 основных вида температур:

– калориметрическую;

– теоретическую (расчётную);

– фактическую.

Калориметрическая температура достигается в том случае, когда всё тепло, выделившееся в процессе горения, расходуется на нагрев продуктов горения, например, при горении бензола – 2533 К , бензина – 2315 К , водорода – 2503 К , природного газа – 2293 К .

Теоретическая (расчётная) температура определяется с учётом потерь тепла на диссоциацию продуктов горения. Значительная диссоциация продуктов горения углеводородных горючих веществ начинается при температуре > 2000 К . Такие высокие температуры при пожарах в производственных условиях практически не встречаются, поэтому потери тепла на диссоциацию в этих случаях, как правило, не учитываются.

Фактическая температура горения определяется с учётом потерь тепла в окружающую среду и практически для всех горючих веществ составляет ~ 1300 – 1700 К .

Горе́ние - сложный -химический процесс

Горение - это интенсивные химические окислительные реакции, которые сопровождаются выделением тепла и свечением. Горение возникает при наличии горючего вещества, окислителя и источника воспламенения. В качестве окислителей в процессе горения могут выступать кислород, азотная кислота, пероксид натрия, бертолетова соль, перхлораты, нитросоединения и др. В качестве горючего - многие органические соединения, сера, сероводород, колчедан, большинство металлов в свободном виде, оксид углерода, водород и т. д.

Горе́ние - сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе , сопровождающийся интенсивным выделением . Химическая энергия, запасённая в компонентах исходной смеси, может выделяться также в виде и света. Светящаяся зона называется фронтом пламени или просто .

сыграло ключевую роль в развитии человеческой цивилизации. открыл людям возможность приготовления пищи и обогрева жилищ, а впоследствии - развития и создания новых, более совершенных инструментов и технологий.

Горение до сих пор остаётся основным источником энергии в мире и останется таковым в ближайшей обозримой перспективе. В 2010 году примерно 90 % всей энергии, производимой человечеством на Земле, добывалось сжиганием или , и, по прогнозам , эта доля не упадёт ниже 80 % до 2040 года при одновременном росте энергопотребления на 56 % в период с 2010 по 2040 год . С этим связаны такие современной цивилизации, как истощение , окружающей среды и .

Особенности горения, отличающие его от прочих видов , - это большой и большая , приводящая к сильной зависимости скорости реакции от температуры. Реакции горения, как правило, идут по разветвлённо-цепному механизму с прогрессивным самоускорением за счёт выделяющегося в реакции тепла. Вследствие этого горючая смесь, способная храниться при комнатной температуре неограниченно долго, может воспламениться или при достижении критической температуры воспламенения ( ) или при инициировании внешним источником энергии (вынужденное воспламенение, или зажигание).

Если продукты, образующиеся при сгорании исходной смеси в небольшом объёме за короткий промежуток времени, совершают значительную механическую работу и приводят к ударным и тепловым воздействиям на окружающие объекты, то это явление называют взрывом. Процессы горения и взрыва составляют основу для создания , , и различных видов обычных вооружений.

Горение - химический процесс соединения веществ с кислоро­дом, сопровождающийся выделением тепла и света. Для возникнове­ния горения необходим контакт горючего вещества с окислителем (кислород, фтор, хлор, озон) и с источником зажигания, способный передать горючей системе необходимый энергетический импульс. Наиболее бурно горят вещества в чистом кислороде. По мере умень­шения его концентрации горение замедляется. Большинство веществ прекращают горение при снижении концентрации кислорода в воз­духе до 12...14%, а тление - при 7...8% (водород, сероуглерод, оксид этилена и некоторые другие вещества могут гореть в воздухе при 5% кислорода).

Температура, при которой вещество воспламеняется и начинает гореть, называется температурой воспламенения. Эта температура неодинакова у различных веществ и зависит от природы вещества, атмосферного давления, концентрации кислорода и других факторов.

Самовоспламенение - процесс горения, вызванный внешним источником тепла и нагреванием вещества без соприкосновения с от­крытым пламенем.

Температура самовоспламенения - самая низкая температура горючего вещества, при которой происходит резкое увеличение скоро­сти экзотермических реакций, заканчивающееся возникновением пла­мени. Температура самовоспламенения зависит от давления, состава летучих веществ, степени измельчения твердого вещества.

Различают следующие виды процессов горения: вспышка, возго­рание, воспламенение, самовозгорание.

Вспышка - быстрое сгорание горючей смеси, не сопровождаю­щееся образованием сжатых газов.

Температура вспышки - самая низкая температура горючего вещества, при которой над его поверхностью образуются пары или га­зы, способные вспыхивать от источника зажигания, но скорость их об­разования еще недостаточна для последующего горения.

Возгорание - возникновение горения под воздействием источ­ника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Температура воспламенения - наименьшая температура ве­щества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что после их зажи­гания возникает устойчивое пламенное горение. Температура воспла­менения всегда несколько выше температуры вспышки.

Самовозгорание - процесс самонагрева и последующего горения некоторых веществ без воздействия открытого источника зажигания.

Химическое самовозгорание является результатом взаимодействия веществ с кислородом воздуха, воды или между самими веществами. К самовозгоранию предрасположены растительные масла, животные жиры и пропитанные ими тряпки, ветошь, вата. Разогрев этих ве­ществ происходит за счет реакции окисления и полимеризации, кото­рые могут начаться при обычных температурах (10...30 °С). Ацети­лен, водород, метан в смеси с хлором самовозгораются на дневном свету; сжатый кислород вызывает самовозгорание минеральных ма­сел; азотная кислота - деревянной стружки, соломы, хлопка.

К микробиологическому самовозгоранию склонны многие про­дукты растениеводства - сырое зерно, сено и др., в которых при опре­деленной влажности и температуре интенсифицируется жизнедеятель­ность микроорганизмов и образуется паутинистый глей (гриб). Это вызывает повышение температуры веществ до критических величин, после которых происходит самоускорение экзотермических реакций.

Тепловое самовозгорание происходит при первоначальном внеш­нем нагреве вещества до определенной температуры. Полувысыхаю­щие растительные масла (подсолнечное, хлопковое и др.), скипидарные лаки и краски могут самовозгораться при температуре 80. ..100 °С, дре­весные опилки, линолеум - при 100 °С. Чем ниже температура самовозгорания, тем более пожароопасным является вещество.

Лучшие статьи по теме