Для школьников и родителей
  • Главная
  • Подготовка 
  • Z 3 2i записать в алгебраической форме. Комплексные числа. Сложение, вычитание, умножение, деление комплексных чисел. Тригонометрическая форма представления, формула Муавра и корень n-ной степени из комплексного числа. Введение понятия комплексного числа

Z 3 2i записать в алгебраической форме. Комплексные числа. Сложение, вычитание, умножение, деление комплексных чисел. Тригонометрическая форма представления, формула Муавра и корень n-ной степени из комплексного числа. Введение понятия комплексного числа

План урока.

1. Организационный момент.

2. Изложение материала.

3. Домашнее задание.

4. Подведение итогов урока.

Ход урока

I. Организационный момент .

II. Изложение материала .

Мотивация.

Расширение множества вещественных чисел состоит в том, что к действительным числам присоединяются новые числа (мнимые). Введение этих чисел связано с невозможностью во множестве действительных чисел извлечения корня из отрицательного числа.

Введение понятия комплексного числа.

Мнимые числа, которыми мы дополняем действительные числа, записываются в виде bi , где i – мнимая единица, причем i 2 = - 1 .

Исходя из этого, получим следующее определение комплексного числа.

Определение . Комплексным числом называется выражение вида a + bi , где a и b - действительные числа. При этом выполняются условия:

а) Два комплексных числа a 1 + b 1 i и a 2 + b 2 i равны тогда и только тогда, когда a 1 =a 2 , b 1 =b 2 .

б) Сложение комплексных чисел определяется правилом:

(a 1 + b 1 i) + (a 2 + b 2 i) = (a 1 + a 2) + (b 1 + b 2) i .

в) Умножение комплексных чисел определяется правилом:

(a 1 + b 1 i) (a 2 + b 2 i) = (a 1 a 2 - b 1 b 2) + (a 1 b 2 - a 2 b 1) i .

Алгебраическая форма комплексного числа.

Запись комплексного числа в виде a + bi называют алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.

Комплексное число a + bi считается равным нулю, если его действительная и мнимая части равны нулю: a = b = 0

Комплексное число a + bi при b = 0 считается совпадающим с действительным числом a : a + 0i = a .

Комплексное число a + bi при a = 0 называется чисто мнимым и обозначается bi : 0 + bi = bi .

Два комплексных числа z = a + bi и = a – bi , отличающиеся лишь знаком мнимой части, называются сопряженными.

Действия над комплексными числами в алгебраической форме.

Над комплексными числами в алгебраической форме можно выполнять следующие действия.

1) Сложение.

Определение . Суммой комплексных чисел z 1 = a 1 + b 1 i и z 2 = a 2 + b 2 i называется комплексное число z , действительная часть которого равна сумме действительных частей z 1 и z 2 , а мнимая часть - сумме мнимых частей чисел z 1 и z 2 , то есть z = (a 1 + a 2) + (b 1 + b 2)i .

Числа z 1 и z 2 называются слагаемыми.

Сложение комплексных чисел обладает следующими свойствами:

1º. Коммутативность: z 1 + z 2 = z 2 + z 1 .

2º. Ассоциативность: (z 1 + z 2) + z 3 = z 1 + (z 2 + z 3).

3º. Комплексное число –a –bi называется противоположным комплексному числу z = a + bi . Комплексное число, противоположное комплексному числу z , обозначается -z . Сумма комплексных чисел z и -z равна нулю: z + (-z) = 0



Пример 1. Выполните сложение (3 – i) + (-1 + 2i) .

(3 – i) + (-1 + 2i) = (3 + (-1)) + (-1 + 2) i = 2 + 1i .

2) Вычитание.

Определение. Вычесть из комплексного числа z 1 комплексное число z 2 z, что z + z 2 = z 1 .

Теорема . Разность комплексных чисел существует и притом единственна.

Пример 2. Выполните вычитание (4 – 2i) - (-3 + 2i) .

(4 – 2i) - (-3 + 2i) = (4 - (-3)) + (-2 - 2) i = 7 – 4i .

3) Умножение.

Определение . Произведением комплексных чисел z 1 =a 1 +b 1 i и z 2 =a 2 +b 2 i называется комплексное число z , определяемое равенством: z = (a 1 a 2 – b 1 b 2) + (a 1 b 2 + a 2 b 1)i .

Числа z 1 и z 2 называются сомножителями.

Умножение комплексных чисел обладает следующими свойствами:

1º. Коммутативность: z 1 z 2 = z 2 z 1 .

2º. Ассоциативность: (z 1 z 2)z 3 = z 1 (z 2 z 3)

3º. Дистрибутивность умножения относительно сложения:

(z 1 + z 2) z 3 = z 1 z 3 + z 2 z 3 .

4º. z · = (a + bi)(a – bi) = a 2 + b 2 - действительное число.

На практике умножение комплексных чисел производят по правилу умножения суммы на сумму и выделения действительной и мнимой части.

В следующем примере рассмотрим умножение комплексных чисел двумя способами: по правилу и умножением суммы на сумму.

Пример 3. Выполните умножение (2 + 3i) (5 – 7i) .

1 способ. (2 + 3i) (5 – 7i) = (2× 5 – 3× (- 7)) + (2× (- 7) + 3× 5)i = = (10 + 21) + (- 14 + 15)i = 31 + i .

2 способ. (2 + 3i) (5 – 7i) = 2× 5 + 2× (- 7i) + 3i× 5 + 3i× (- 7i) = = 10 – 14i + 15i + 21 = 31 + i .

4) Деление.

Определение . Разделить комплексное число z 1 на комплексное число z 2 , значит найти такое комплексное число z , что z · z 2 = z 1 .

Теорема. Частное комплексных чисел существует и единственно, если z 2 ≠ 0 + 0i .

На практике частное комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю.

Пусть z 1 = a 1 + b 1 i , z 2 = a 2 + b 2 i , тогда


.

В следующем примере выполним деление по формуле и правилу умножения на число, сопряженное знаменателю.

Пример 4. Найти частное .

5) Возведение в целую положительную степень.

а) Степени мнимой единицы.

Пользуясь равенством i 2 = -1 , легко определить любую целую положительную степень мнимой единицы. Имеем:

i 3 = i 2 i = -i,

i 4 = i 2 i 2 = 1,

i 5 = i 4 i = i,

i 6 = i 4 i 2 = -1,

i 7 = i 5 i 2 = -i,

i 8 = i 6 i 2 = 1 и т. д.

Это показывает, что значения степени i n , где n – целое положительное число, периодически повторяется при увеличении показателя на 4 .

Поэтому, чтобы возвести число i в целую положительную степень, надо показатель степени разделить на 4 и возвести i в степень, показатель которой равен остатку от деления.

Пример 5. Вычислите: (i 36 + i 17) · i 23 .

i 36 = (i 4) 9 = 1 9 = 1,

i 17 = i 4 × 4+1 = (i 4) 4 × i = 1 · i = i.

i 23 = i 4 × 5+3 = (i 4) 5 × i 3 = 1 · i 3 = - i.

(i 36 + i 17) · i 23 = (1 + i) (- i) = - i + 1= 1 – i.

б) Возведение комплексного числа в целую положительную степень производится по правилу возведения двучлена в соответствующую степень, так как оно представляет собой частный случай умножения одинаковых комплексных сомножителей.

Пример 6. Вычислите: (4 + 2i) 3

(4 + 2i) 3 = 4 3 + 3× 4 2 × 2i + 3× 4× (2i) 2 + (2i) 3 = 64 + 96i – 48 – 8i = 16 + 88i.

Комплексные числа

Мнимые и комплексные числа. Абсцисса и ордината

комплексного числа. Сопряжённые комплексные числа.

Операции с комплексными числами. Геометрическое

представление комплексных чисел. Комплексная плоскость.

Модуль и аргумент комплексного числа. Тригонометрическая

форма комплексного числа. Операции с комплексными

числами в тригонометрической форме. Формула Муавра.

Начальные сведения о мнимых и комплексных числах приведены в разделе «Мнимые и комплексные числа». Необходимость в этих числах нового типа появилась при решении квадратных уравнений для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики

и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Основные договорённости:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0 i или a – 0 i . Например, записи 5 + 0 i и 5 – 0 i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d ) i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Это определение соответствует правилам действий с обычными многочленами.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число ( a – c ) + (b – d ) i .

Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

( ac – bd ) + (ad + bc ) i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = 1.

П р и м е р . (a+ bi )( a – bi ) = a 2 + b 2 . Следовательно, произведение

двух сопряжённых комплексных чисел равно действительному

положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi .

Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3 i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3 i

И выполнив все преобразования, получим:

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B – число 2, и O – ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b (см. рис.). Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или буквой r

Комплексные числа - это минимальное расширение множества привычных нам действительных чисел. Их принципиальное отличие в том, что появляется элемент, который в квадрате дает -1, т.е. i, или .

Любое комплексное число состоит из двух частей: вещественной и мнимой :

Таким образом видно, что множество действительных чисел совпадает с множеством комплексных чисел с нулевой мнимой частью.

Самая популярная модель множества комплексных чисел - это обычная плоскость. Первая координата каждой точки будет её вещественной частью, а вторая -мнимой. Тогда в роли самих комплексных чисел бдут выступать вектора с началом в точке (0,0).

Операции над комплексными числами.

На самом деле, если брать в расчет модель множества комплексных чисел, интуитивно понятно, что сложение (вычитание) и умножение двух комплексных числе производятся так же как соответственные операции над векторами. Причем имеется в виду векторное произведение векторов, потому что результатом этой операции является опять же вектор.

1.1 Сложение.

(Как видно, данная операции в точности соответствует )

1.2 Вычитание , аналогично, производится по следующему правилу:

2. Умножение.

3. Деление.

Определяется просто как обратная операция к умножению.

Тригонометрическая форма.

Модулем комплексного числа z называется следующая величина:

,

очевидно, что это, опять же, просто модуль (длина) вектора {a,b}.

Чаще всего модуль комплексного числа обозначается как ρ.

Оказывается, что

z = ρ(cosφ+isinφ) .

Непосредственно из тригонометрической формы записи комплексного числа вытекают следующие формулы :

Последнюю формулу называют Формулой Муавра . Непосредственно из нее выводится формула корня n-ной степени из комплексного числа :

таким образом, существует n корней n-ной степени из комплексного числа z.

Лучшие статьи по теме