Для школьников и родителей
  • Главная
  • Проекты
  • Уравнение силы упругости. Деформации. Силы упругости. Закон Гука. Закон, установленный Гуком

Уравнение силы упругости. Деформации. Силы упругости. Закон Гука. Закон, установленный Гуком

Темы кодификатора ЕГЭ: силы в механике, сила упругости, закон Гука.

Как мы знаем, в правой части второго закона Ньютона стоит равнодействующая (то есть векторная сумма) всех сил, приложенных к телу. Теперь нам предстоит изучить силы взаимодействия тел в механике. Их три вида: сила упругости, гравитационная сила и сила трения. Начинаем с силы упругости.

Деформация.

Силы упругости возникают при деформациях тел. Деформация - это изменение формы и размеров тела. К деформациям относятся растяжение, сжатие, кручение, сдвиг и изгиб.
Деформации бывают упругими и пластическими. Упругая деформация полностью исчезает после прекращения действия вызывающих её внешних сил, так что тело полностью восстанавливает форму и размеры. Пластическая деформация сохраняется (быть может, частично) после снятия внешней нагрузки, и тело уже не возвращается к прежним размерам и форме.

Частицы тела (молекулы или атомы) взаимодействуют друг с другом силами притяжения и отталкивания, имеющими электромагнитное происхождение (это силы, действующие между ядрами и электронами соседних атомов). Силы взаимодействия зависят о расстояний между частицами. Если деформации нет, то силы притяжения компенсируются силами отталкивания. При деформации изменяются расстояния между частицами, и баланс сил взаимодействия нарушается.

Например, при растяжении стержня расстояния между его частицами увеличиваются, и начинают преобладать силы притяжения. Наоборот, при сжатии стержня расстояния между частицами уменьшаются, и начинают преобладать силы отталкивания. В любом случае возникает сила, которая направлена в сторону, противоположную деформации, и стремится восстановить первоначальную конфигурацию тела.

Сила упругости - это сила, возникающая при упругой деформации тела и направленная в сторону, противоположную смещению частиц тела в процессе деформации. Сила упругости:

1. действует между соседними слоями деформированного тела и приложена к каждому слою;
2. действует со стороны деформированного тела на соприкасающееся с ним тело, вызывающее деформацию, и приложена в месте контакта данных тел перпендикулярно их поверхностям (типичный пример - сила реакции опоры).

Силы, возникающие при пластических деформациях, не относятся к силам упругости. Эти силы зависят не от величины деформации, а от скорости её возникновения. Изучение таких сил
выходит далеко за рамки школьной программы.

В школьной физике рассматриваются растяжения нитей и тросов, а также растяжения и сжатия пружин и стержней. Во всех этих случаях силы упругости направлены вдоль осей данных тел.

Закон Гука.

Деформация называется малой , если изменение размеров тела много меньше его первоначальных размеров. При малых деформациях зависимость силы упругости от величины деформации оказывается линейной.

Закон Гука . Абсолютная величина силы упругости прямо пропорциональна величине деформации. В частности, для пружины, сжатой или растянутой на величину , сила упругости даётся формулой:

(1)

где - коэффициент жёсткости пружины.

Коэффициент жёсткости зависит не только от материала пружины, но также от её формы и размеров.

Из формулы (1) следует, что график зависимости силы упругости от (малой) деформации является прямой линией (рис. 1 ):

Рис. 1. Закон Гука

Коэффициент жёсткости - о угловой коэффициент в уравнении прямой . Поэтому справедливо равенство:

где - угол наклона данной прямой к оси абсцисс. Это равенство удобно использовать при экспериментальном нахождении величины .

Подчеркнём ещё раз, что закон Гука о линейной зависимости силы упругости от величины деформации справедлив лишь при малых деформациях тела. Когда деформации перестают быть малыми, эта зависимость перестаёт быть линейной и приобретает более сложный вид. Соответственно, прямая линия на рис. 1 - это лишь небольшой начальный участок криволинейного графика, описывающего зависимость от при всех значениях деформации .

Модуль Юнга.

В частном случае малых деформаций стержней имеется более детальная формула, уточняющая общий вид ( 1 ) закона Гука.

Именно, если стержень длиной и площадью поперечного сечения растянуть или сжать
на величину , то для силы упругости справедлива формула:

Здесь - модуль Юнга материала стержня. Этот коэффициент уже не зависит от геометрических размеров стержня. Модули Юнга различных веществ приведены в справочных таблицах.

План-конспект урока по теме «Деформация тел. Сила упругости. Закон Гука»

Дата :

Тема: «Деформация тел. Сила упругости. Закон Гука»

Цели:

Образовательная : Обеспечить и сформировать осознанное усвоение знаний о деформации тел, силе упругости и законе Гука.

Развивающая : Продолжить развитие навыков самостоятельной деятельности, навыков работы в группах.

Воспитательная : Формировать познавательный интерес к новым знаниям; воспитывать дисциплину поведения.

Тип урока: урок усвоения новых знаний

Оборудование и источники информации:

    Исаченкова, Л. А. Физика: учеб. для 9 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. Минск: Народная асвета, 2015

    Карточки с заданиями.

Структура урока:

    Организационный момент(5 мин)

    Актуализация опорных знаний(5мин)

    Изучение нового материала (15 мин)

    Физкультминутка (1 мин)

    Закрепление знаний (14 мин)

    Итоги урока(5 мин)

Содержание урока

    Организационный момент

Здравствуйте, садитесь! (Проверка присутствующих). Сегодня на уроке мы должны разобраться с деформацией тел, силой упругости и законом Гука. А это значит, что Тема урока : «Деформация тел. Сила упругости. Закон Гука».

    Актуализация опорных знаний

    Ответ: Пружина растянулась. Произошла деформация пружины.

    Ответ: Сила, возникающая при деформации тела называется силой упругости. Направлена она в сторону, противоположную направлению смещения частиц тела при деформации.

    Ответ: Чем больше сила, тем больше деформация. Подействовали на пружину большей силой (увеличивали количество грузов) и растяжение пружины стало больше.

    Изучение нового материала

Английский естествоиспытатель Роберт Гук (рис. 145) родился во Фре- шуотере, графство Айл-оф-Уайт (остров Уайт), в семье священника местной церкви. В 1653 году поступил в Крайст- Чёрч-колледж Оксфордского университета, где впоследствии стал ассистентом Р. Бойля. В 1662 году был назначен куратором экспериментов при только что основанном Королевском обществе; член Лондонского королевского общества с 1663 года. С 1665 года - профессор Лондонского университета, в 1677-1683 гг. - секретарь Лондонского Королевского общества.

Разносторонний учёный и изобретатель, Гук затронул в своих работах многие разделы естествознания. В 1659 году построил воздушный насос, совместно с X. Гюйгенсом установил (около 1660 г.) постоянные точки термометра - таяния льда и кипения воды. Усовершенствовал барометр, зеркальный телескоп, применил зрительную трубу для измерения углов, сконструировал прибор для измерения силы ветра, машину для деления круга и другие приборы.

Большое значение имело открытие Гуком в 1660 году закона пропорциональности между силой, приложенной к упругому телу, и его деформацией (закон Гука).

Гук высказал идею, что все небесные тела тяготеют друг к другу, и дал общую картину движения планет. Он предвосхитил закон всемирного тяготения И. Ньютона; в 1679 году высказал мнение, что если сила притяжения обратно пропорциональна квадрату расстояния, то планета должна двигаться по эллипсу. Идею об универсальной силе тяготения Гук имел с середины 1660 годов, затем, ещё в недостаточно определённой форме, он выразил её в 1674 году в трактате «Попытка доказательства движения Земли», но уже в письме 6 января 1680 года Ньютону Гук впервые ясно формулирует закон всемирного тяготения и предлагает Ньютону, как математически более компетентному исследователю, строго математически обосновать его, показав связь с первым законом Кеплера для некруговых орбит (вполне вероятно, уже имея приближённое решение). С этого письма, насколько сейчас известно, начинается документальная история закона всемирного тяготения. Ньютону также принадлежат некоторые работы по тяготению, предшествовавшие результатам Гука, однако большинство самых важных результатов, о которых позднее вспоминал Ньютон, во всяком случае, не было им никому сообщено.

С помощью усовершенствованного им микроскопа Гук наблюдал структуру растений и дал чёткий рисунок, впервые показавший клеточное строение пробки (термин «клетка» был введён Гуком). В своей работе «Микрография» (Micrographia , 1665) он описал клетки бузины, укропа, моркови, привел изображения весьма мелких объектов, таких как глаз мухи, комара и его личинки, детально описал клеточное строение пробки, крыла пчелы, плесени, мха. В этой же работе Гук изложил свою теорию цветов, объяснил окраску тонких слоёв отражением света от их верхней и нижней границ.

Гук высказывал мысли об изменении земной поверхности, которое, по его мнению, повлекло изменение фауны. Гук считал, что окаменелости - это остатки прежде живших существ, по которым можно воспроизвести историю Земли.

Гук был известен также как архитектор. Он был главным помощником Кристофера Рена при восстановлении Лондона после великого пожара 1666 года. В сотрудничестве с Реном и самостоятельно построил в качестве архитектора множество зданий (например, Гринвичскую обсерваторию, церковь Вилленского прихода в Милтон Кинсе). В частности, сотрудничал с Реном в строительстве лондонского Собора св. Павла, купол которого построен с использованием метода, придуманного Гуком. Внёс серьёзный вклад в градостроительство, предложив новую схему планировки улиц при восстановлении Лондона.

Сила придает телам ускорение и вызывает деформацию. Мы знаем, как определить ускорение. А как найти деформацию?

Деформацией тела называют изменение его размеров и формы. Деформация происходит в результате перемещения одних частей тела относительно других. На рисунке 150, а - г показаны различные виды деформаций: а) сжатие; 6) сдвиг; в) изгиб; г) кручение.

Для рисунка 150, а - г использована модель тела, состоящая из пластин и пружинок. Вы сами сможете моделировать любые деформации с помощью обычного ластика или кубика из поролона, на грани которого нанесены параллельные прямые (рис. 151).

Основными видами деформаций являются растяжение, сжатие (см. рис. 150, а) и сдвиг (см. рис. 150, б).

При сжатии и растяжении изменяются расстояния между слоями, а при сдвиге слон смешаются друг относительно друга.

Деформацию изгиба можно представить как комбинацию сжатия и растяжения, которые неодинаковы в разных частях тела (см. рис. 150, в). Деформация кручения сводится к комбинации деформации сдвига (см. рис. 150, г).

Деформации возникают под действием приложенных к телу внешних сил (см. рис. 150). Проведем опыт. Надавим на ластик (рис. 152, а). Он деформируется. Прекратим действие силы. Деформация исчезла (рис. 152,6). Если размеры и форма тела полностью восстанавливаются после прекращения действия силы, то деформацию называют упругой .

Деформируем теперь кусок пластилина (рис. 152, в). После прекращения действия силы его форма не восстановилась ( рис. 152, г). Такую деформацию называют неупругой или пластической .

Характер деформации зависит не только от вещества, из которого состоит тело, но и от того, насколько велика внешняя сила, как долго она действует, а также от температуры тела. Например, если железную пластину немного изогнуть и отпустить, она восстановит свою форму. Однако если ее долго держать под такой же нагрузкой, то деформация станет неупругой. Если же температура тела высока, то деформация будет пластической даже при действии малой кратковременной силы.

Пластической деформации подвергают металл при прокатке, ковке (рис. 153), штамповке и т. д.

Рассмотрим самую простую деформацию: упругое растяжение. Как зависит величина деформации тела от приложенной к нему силы?

Проведем опыт. Закрепим один конец резинового шнура, а к другому подвесим груз (рис. 154).

Под действием деформирующей силы F деф (веса груза Р) шнур растянется. Его длина станет больше начальной длины 0 на величину Δ =- 0 (см. рис. 154). Будем увеличивать нагрузку, подвешивая два, три и т. д. одинаковых груза. При увеличении деформирующей силы в два, три и т. д. раза ( F деф = P l ,2Р 1 , 3Р 1 ...) удлинение шнура Δ возрастет во столько же раз (см. рис. 154). Значит, удлинение шнура прямо пропорционально модулю деформирующей силы: Δ ~ F деф ) .

Проведя аналогичные опыты по сжатию пружины (рис. 155), можно сделать вывод: при упругих деформациях сжатия и растяжения модуль изменения длины тела прямо пропорционален модулю деформирующей силы:

| Δ |~ F деф (1)

Пропорциональность сохраняется, пока деформация находится в пределах упругости. При неупругой деформации зависимость удлинения от деформирующей силы становится более сложной. При дальнейшем увеличении деформирующей силы наступает разрушение тела.

В опытах по растяжению шнура и сжатию пружины в ответ на действие деформирующей силы F деф возникала противодействующая ей сила упругости F упр (см. рис. 154 и 155).

Сила упругости приложена к телу, которое вызывает деформацию, и направлена противоположно деформирующей силе.

Согласно третьему закону Ньютона

Из формул (1 ) и (2) следует

где к - постоянный коэффициент.

При упругих деформациях сжатия и растяжения модуль силы упругости прямо пропорционален модулю изменения длины тела.

Это утверждение носит название закон Гука.

Постоянная к = - называется коэффициентом упругости или жесткостью тела. Она численно равна модулю силы упругости при удлинении (или сжатии) тела на единицу длины. В СИ жесткость измеряется в ньютонах на метр ().

Жесткость тела зависит от материала, из которого оно изготовлено, от формы и размеров тела, от его температуры. Для тела постоянного поперечного сечения (шнура, проволоки и т. д.) жесткость прямо пропорциональна площади сечения S и обратно пропорциональна начальной длине тела 0 : k = E .

" Коэффициент Е называют модулем упругости. Он характеризует упругие свойства вещества. Например, модуль упругости стали в десятки тысяч раз больше, чем резины.

Из рисунков 154 и 155 видно, что и при растяжении, и при сжатии сила упругости направлена противоположно перемещению точки приложения деформирующей силы (точки А). С учетом этого закон Гука записывают в виде:

где F y пр х - проекция силы упругости на ось Ох, х - координата точки А (см. рис. 154 и 155). Начало координат на оси Ох выбирается так, чтобы при х = 0 деформация отсутствовала.

На рисунках 156, а, б представлены графики, построенные по формулам (3) и (4). Прямолинейность графиков соответствует прямой пропорциональной зависимости модуля силы упругости от |Δ| и от х.

Не забывайте, что закон Гука, а значит, и соотношения (1), (3) и (4) выполняются только для упругих деформаций!

Все окружающие нас тела в той или иной степени деформированы. Хотя чаще всего эти деформации незаметны, связанные с ними силы упругости играют весьма существенную роль. Например, сила упругости папки уравновешивает силу тяжести книги (рис. 157, а), сила упругости подвеса компенсирует силу тяжести люстры (рис. 157, 6), сила упругости рельсов удерживает железнодорожный состав и т. д.

Упругую силу, возникающую в ответ на действие тела на опору, часто называют силой реакции опоры. Силу упругости растянутой нити, веревки, троса и т. д. - силой натяжения.

Почему при деформации возникают силы упругости? Какова их природа?

Силы упругости возникают потому, что молекулы, из которых состоят тела, взаимодействуют между собой. Когда внешние силы сжимают тело, молекулы сильнее отталкивают друг друга и препятствуют сжатию. Если же внешние силы растягивают тело, молекулы сильнее притягиваются друг к другу и противодействуют растяжению.

А почему молекулы взаимодействуют? Потому что они состоят из микрочастиц, обладающих электрическим зарядом: положительно заряженных ядер атомов и отрицательно заряженных электронов в их оболочках.

Следовательно, силы упругости имеют электромагнитную природу .

Упругие и пластические свойства тела зависят и от того, как расположены его молекулы (или атомы). На рисунке 158 изображены кристаллические решетки алмаза и графита. Различие в расположении одних и тех же частиц (атомов углерода) приводит к резким отличиям свойств этих веществ.

    Физкультминутка


    Закрепление знаний

Рассмотрим пример решения задачи на странице 112:

А сейчас перейдем к выполнению заданий на карточках по теме «Деформация тел. Сила упругости. Закон Гука» (приложение 1)

Ответ:

Под действием сил упругости резиновый жгут деформировался. На жгут на рисунке 2 действовала меньше сила упругости, чем на жгут на рисунке 1.

Ответ:

К упругой деформации можно отнести губку, безмен.

К пластической деформации можно отнести ластик, пластилин.

    Итоги урока

    Изменение размеров или формы тела называется деформацией.

    Если после прекращения действия внешних сил размеры и форма тела полностью восстанавливаются, то деформация называется упругой. Если не полностью, то - пластической.

    Силы упругости направлены противоположно деформирующим силам.

    При упругих деформациях сжатия и растяжения модуль силы упругости прямо пропорционален модулю изменения длины тела:

Организация домашнего задания

§ 22, упр. 15 № 1, 2.

Рефлексия.

Продолжите фразы:

    Сегодня на уроке я узнал…

    Было интересно…

    Знания, которые я получил на уроке, пригодятся…

Приложение 1

Карточка по теме « Деформация тел. Сила упругости. Закон Гука »



Сила упругости — это та сила, которая возникает при деформации тела и которая стремится восстановить прежние форму и размеры тела.

Сила упругости возникает в результате электромагнитного взаимодействия между молекулами и атомами вещества.

Самый простой вариант деформации можно рассмотреть на примере сжатия и растяжения пружины.

На данном рисунке (x > 0) — деформация растяжения; (x < 0) — деформация сжатия. (Fx) — внешняя сила.

В том случае, когда деформация самая незначительная, т.е малая, сила упругости направлена в сторону, которая является противоположной по направлению перемещающихся частиц тела и пропорциональна деформации тела:

Fx = Fупр = - kx

С помощью данного соотношения выражен закон Гука, который был установлен экспериментальным методом. Коэффициент k принято называть жесткостью тела. Жесткость тела измеряется в ньютонах на метр (Н/м) и зависит от размеров и формы тела, а также от того, из каких материалов состоит данное тело.

Закон Гука в физике для определения деформации сжатия или растяжения тела записывают совершенно в другой форме. В данном случае относительной деформацией называется


Роберт Гук

(18.07.1635 - 03.03.1703)

Английский естествоиспытатель, учёный-энциклопедист

отношение ε = x / l . В то же время напряжением называется площадь поперечного сечения тела после относительной деформации:

σ = F / S = -Fупр / S

В данном случае закон Гука формулируют так: напряжению σ пропорциональна относительная деформация ε . В данной формуле коэффициент Е называют модулем Юнга. Данный модуль не зависит от формы тела и его размеров, но в то же время, напрямую зависит от свойств материалов, из которого состоит данное тело. Для различных материалов модуль Юнга колеблется в достаточно широком диапазоне. Например, для резины E ≈ 2·106 Н/м2, а для стали E ≈ 2·1011 Н/м2 (т.е. на пять порядков больше).

Вполне допустимо обобщить закон Гука и в тех случаях, когда совершаются более сложные деформации. Например, рассмотрим деформацию изгиба. Рассмотрим стержень, который лежит на двух опорах и имеет существенный прогиб.

Со стороны опоры (или подвеса) на данное тело действует упругая сила, это сила реакции опоры. Сила реакции опоры при соприкосновении тел будет направлена к поверхности соприкосновения строго перпендикулярно. Такую силу принято называть силой нормального давления.

Рассмотрим второй вариант. Путь тело лежит на неподвижном горизонтальном столе. Тогда реакции опоры уравновешивает силу тяжести и направлена она вертикально вверх. Причем весом тела считают силу, с которой тело воздействует на стол.

Как мы видели, при деформации тела возникает сила, электрическая по своей природе, которая возвращает тело в первоначальное состояние.

В уроках "Второй закон Ньютона" и "Измерение сил. Динамометр" мы ознакомились с силами, которые возникают при деформации пружины. Эти силы мы назвали силами упругости. Теперь мы можем сказать, что сила упругости возникает при деформации любого тела, а не только пружины; всякое тело может играть роль пружины!

Так как сила упругости возвращает тело к первоначальному состоянию, то она направлена против направления смещения частиц тела при деформации. Если, например, стержень, один из концов которого закреплен (рис. 1), растянут так, что частицы в нем смещены относительно закрепленного конца вправо (рис. 2), то возникает сила упругости, направленная влево. Если же стержень сжат, как это показано на рисунке 3, то частицы в нем смещены влево, а сила упругости направлена вправо.

Сила упругости - это сила, возникающая при деформации тел и направленная в сторону, противоположную направлению смещения частиц тела при деформации.

В дальнейшем мы будем рассматривать силы упругости, возникающие только при деформации растяжения или сжатия.

Если бы мы провели опыт, описанный в уроке "Измерение сил. Динамометр", не с пружиной, а, например, с каким-нибудь стержнем, то мы смогли бы убедиться в том, что при малых деформациях стержня (малых по сравнению с его длиной) сила упругости деформированного стержня, так же как и пружины, пропорциональна его удлинению. Следовательно, закон Гука, выражаемый формулой , справедлив для всякого упругого тела при условии, что эти деформации достаточно малы. Деформация x определяет собой взаимное расположение частей деформированного тела, то есть их координаты. Следовательно, закон Гука показывает, что сила упругости зависит от координат отдельных частей деформированного тела.

Но как возникает сама деформация тела?

Возьмем две тележки с укрепленными впереди шариками из мягкой резины (рис. 4). Приведем тележки в движение навстречу друг другу так, чтобы они столкнулись. Когда шарики коснутся один другого, оба они изменят свою форму, деформируются. Одно временно скорости тележек, с которыми скреплены шарики, станут постепенно уменьшаться. В конце концов тележки на мгновение остановятся, а затем начнут двигаться в противоположных направлениях, то есть снова получат ускорения. Ясно, что причиной ускорения является сила упругости, возникающая при деформации шариков. Из этого опыта видно, что деформация произошла из-за того, что шарики уже после соприкосновения продолжали еще некоторое время двигаться в прежнем направлении, пока возникшая из-за деформации сила упругости не остановила их. После этого деформированные шарики, восстанавливая свою форму, заставили тележки двигаться в противоположном направлении. Но как только шарики восстановили свою форму, исчезла и сила упругости. Можно, следовательно, сказать, что причиной деформации шарика явилось движение одной его части относительно другой, а следствием деформации - сила упругости.


Если мы теперь заменим резиновые шарики стальными и повторим опыт, то увидим, что результат будет совершенно таким же. Тележки столкнутся, на миг остановятся, а затем станут двигаться в противоположных направлениях. Но мы теперь не увидим изменения формы шариков, их деформации. Это не значит, что деформации нет. Ведь тележки со стальными шариками ведут себя совершенно так же, как и тележки с резиновыми шариками. Но у стальных шариков деформации очень малы, и их нельзя заметить без специальных приборов (это значит, что у стальных шариков жесткость значительно больше, чем у резиновых).

Часто бывают незаметны не только деформации, но и те движения, из-за которых деформации возникают. Когда мы, например, видим лежащую на столе книгу, то, конечно, не можем заметить, что и книга, и стол слегка деформированы. Но именно деформация стола, совсем незаметная на глаз, приводит к появлению силы упругости, которая направлена вертикально вверх и уравновешивает силу притяжения книги к Земле. Поэтому книга и находится в покое. Когда мы кладем книгу на стол, она под действием притяжения к Земле начинает двигаться вертикально вниз, как всякое падающее тело. Вот при этом-то движении книга и смещает частицы, из которых состоит соприкасающаяся с ней часть стола. Стол деформируется, и возникает сила упругости, как раз равная силе притяжения книги к Земле, но направленная вверх.

То же можно сказать и о действии подвеса. Когда к свободному концу шнура AK прикрепляется тело (рис. 5), то в первый момент оно под действием силы притяжения к Земле F начинает падать вертикально вниз в направлении, указанном стрелкой. При этом вместе с телом перемещается вниз и конец шнура К. Вследствие этого шнур удлиняется, то есть деформируется. Благодаря деформации шпура появляется сила упругости Fynp (рис. 6), направленная вверх. На тело, следовательно, действуют две силы, направленные противоположно. В начале падения тела удлинение шнура мало, мала и сила упругости. По мере дальнейшего перемещения тела вниз удлинение шнура увеличивается, одновременно увеличивается и сила упругости. Когда подвешенное тело находится в покое, то это означает, что сила упругости по своему абсолютному значению равна силе притяжения тела к Земле.

Если шнур AK сделан из мягкой резины, жесткость которой мала, то его удлинение может быть замечено даже на глаз. Но если этот шнур представляет собой стальную проволоку большой жесткости, то удлинение окажется настолько малым, что его можно обнаружить лишь специальными приборами. Силу упругости, действующую на тело со стороны опоры или подвеса, часто называют силой реакции опоры или силой реакции подвеса (или натяжением подвеса).

Во многих случаях деформации, приводящие к появлению силы упругости, хорошо заметны. Легко заметить удлинение спиральной пружины или резинового шнура. Приведенные здесь примеры показывают, что сила упругости возникает при соприкосновении взаимодействующих тел. Деформируются, разумеется, всегда оба тела.

Важная особенность силы упругости состоит в том, что она направлена перпендикулярно поверхности соприкосновения взаимодействующих тел, а если во взаимодействии участвуют такие тела, как стержни, шнуры, спиральные пружины, то сила упругости направлена вдоль их осей.

Деформация (от лат. Deformatio – искажение) – изменение формы и размеров тела под действием внешних сил.

Деформации возникают потому, что различные части тела движутся по-разному. Если бы все части тела двигались одинаково, то тело всегда сохраняло бы свою первоначальную форму и размеры, т.е. оставалось бы недеформированным. Рассмотрим несколько примеров.

Виды деформации

Деформации растяжения и сжатия . Если к однородному, закрепленному с одного конца стержню приложить силу F вдоль его оси в направлении от стержня, то он подвергнется деформации растяжения . Деформацию растяжения испытывают тросы, канаты, цепи в подъемных устройствах, стяжки между вагонами и т.д. Если на закрепленный стержень подействовать силой вдоль его оси по направлению к стержню, то он подвергнется сжатию . Деформацию сжатия испытывают столбы, колонны, стены, фундаменты зданий и т.п. При растяжении или сжатии изменяется площадь поперечного сечения тела.

Деформация сдвига . Деформацию сдвига можно наглядно продемонстрировать на модели твердого тела, представляющего собой ряд параллельных пластин, соединенных между собой пружинами (рис. 3). Горизонтальная сила F сдвигает пластины друг относительно друга без изменения объема тела. У реальных твердых тел при деформации сдвига объем также не изменяется. Деформации сдвига подвержены заклепки и болты, скрепляющие части мостовых ферм, балки в местах опор и др. Сдвиг на большие углы может привести к разрушению тела – срезу. Срез происходит при работе ножниц, долота, зубила, зубьев пилы и т.д.

Деформация изгиба . Легко согнуть стальную или деревянную линейку руками или с помощью какой-либо другой силы. Балки и стержни, расположенные горизонтально, под действием силы тяжести или нагрузок прогибаются – подвергаются деформации изгиба. Деформацию изгиба можно свести к деформации неравномерного растяжения и сжатия. Действительно, на выпуклой стороне (рис. 4) материал подвергается растяжению, а на вогнутой – сжатию. Причем чем ближе рассматриваемый слой к среднему слою KN , тем растяжение и сжатие становятся меньше. Слой KN , не испытывающий растяжения или сжатия, называется нейтральным. Так как слои АВ и CD подвержены наибольшей информации растяжения и сжатия, то в них возникают наибольшие силы упругости (на рисунке 4 силы упругости показаны стрелками). От внешнего слоя к нейтральному эти силы уменьшаются. Внутренний слой не испытывает заметных деформаций и не противодействует внешним силам, а поэтому является лишним в конструкции. Его обычно удаляют, заменяя стержни трубами, а бруски – тавровыми балками (рис. 5). Сама природа в процессе эволюции наделила человека и животных трубчатыми костями конечностей и сделала стебли злаков трубчатыми, сочетая экономию материала с прочностью и меткостью «конструкций».

Деформация кручения . Если на стержень, один из концов которого закреплен (рис. 6), подействовать парой сил, лежащей в плоскости поперечного сечения стержня, то он закручивается. Возникает, как говорят, деформация кручения.

Каждое поперечное сечение поворачивается относительно другого вокруг оси стержня на некоторый угол. Расстояние между сечениями не меняется. Таким образом, опыт показывает, что при кручении стержень можно представить как систему жестких кружков, насаженных центрами на общую ось. Кружки эти (точнее, сечения) поворачиваются на различные углы в зависимости от их расстояния до закрепленного конца. Слои поворачиваются, но на различные углы. Однако при этом соседние слои поворачиваются друг относительно друга одинаково вдоль всего стержня. Деформацию кручения можно рассматривать как неоднородный сдвиг. Неоднородность сдвига выражается в том, что деформация сдвига изменяется вдоль радиуса стержня. На оси деформация отсутствует, а на периферии она максимальна. На самом удаленном от закрепленного конца торце стержня угол поворота наибольший. Его называют углом кручения. Кручение испытывают валы всех машин, винты, отвертки и т.п.

Основными деформациями являются деформации растяжения (сжатия) и сдвига. При деформации изгиба происходит неоднородное растяжение и сжатие, а при деформации кручения – неоднородный сдвиг.

Силы упругости.

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости .

Силы упругости препятствуют изменению размеров и формы тела. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. Например, со стороны упруго деформированной доски D на брусок С , лежащий на ней, действует сила упругости F упр (рис. 7).

Важная особенность силы упругости состоит в том, что она направлена перпендикулярно поверхности соприкосновения тел, а если идет речь о таких телах, как деформированные пружины, сжатые или растянутые стержни, шнуры, нити, то сила упругости направлена вдоль их осей. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела.

Силу, действующую на тело со стороны опоры или подвеса, называют силой реакции опоры или силой натяжения подвеса . На рисунке 8 приведены примеры приложения к телам сил реакции опоры (силы N 1 , N 2 , N 3 , N 4 и N 5) и сил натяжения подвесов (силы T 1 , T 2 , T 3 и T 4).

Абсолютное и относительное удлинения

Линейная деформация (деформация растяжения) – деформация, при которой происходит изменение только одного линейного размера тела.

Количественно она характеризуется абсолютным Δl и относительным ε удлинением.

\(~\Delta l = |l - l_0|\) ,

где Δl – абсолютное удлинение (м); l и l 0 – конечная и начальная длина тела (м).

  • Если тело растягивают, то l > l 0 и Δl = l l 0 ;
  • если тело сжимают, то l < l 0 и Δl = –(l l 0) = l 0 – l (рис. 9).

\(~\varepsilon = \frac{\Delta l}{l_0}\) или \(~\varepsilon = \frac{\Delta l}{l_0} \cdot 100%\) ,

где ε – относительное удлинение тела (%); Δl – абсолютное удлинение тела (м); l 0 –начальная длина тела (м).

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

\(~F_{ynp} = k \cdot \Delta l\) , (1)

где F упр – модуль силы упругости, возникающей в теле при деформации (Н); Δl – абсолютное удлинение тела (м).

Коэффициент k называется жесткостью тела – коэффициент пропорциональности между деформирующей силой и деформацией в законе Гука.

Жесткость пружины численно равна силе, которую надо приложить к упруго деформируемому образцу, чтобы вызвать его единичную деформацию.

В системе СИ жесткость измеряется в ньютонах на метр (Н/м):

\(~[k] = \frac{}{[\Delta l]}\) .

Коэффициент жесткости зависит от формы и размеров тела, а также от материала.

Закон Гука для одностороннего растяжения (сжатия) формулируют так:

сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Механическое напряжение.

Состояние упруго деформированного тела характеризуют величиной σ , называемой механическим напряжением .

Механическое напряжение σ равно отношению модуля силы упругости F упр к площади поперечного сечения тела S :

\(~\sigma = \frac{F_{ynp}}{S}\) .

Измеряется механическое напряжение в Па: [σ ] = Н/м 2 = Па.

Наблюдения показывают, что при небольших деформациях механическое напряжение σ пропорционально относительному удлинению ε :

\(~\sigma = E \cdot |\varepsilon|\) . (2)

Эта формула является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным.

Коэффициент пропорциональности Е в законе Гука называется модулем упругости (модулем Юнга) . Экспериментально установлено, что

модуль Юнга численно равен такому механическому напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза.

Докажем это: Из закона Гука получаем, что \(~E = \frac{\sigma}{\varepsilon}\) . Если модуль Юнга E численно равен механическому напряжению σ , то \(~\varepsilon = \frac{\Delta l}{l_0} = 1\) . Тогда \(~\Delta l = l - l_0 = l_0 ; l = 2 l_0\) .

Измеряется модуль Юнга в Па: [E ] = Па/1 = Па.

Практически любое тело (кроме резины) при упругой деформации не может удвоить свою длину: значительно раньше оно разорвется. Чем больше модуль упругости Е , тем меньше деформируется стержень при прочих равных условиях (l 0 , S , F ). Таким образом, модуль Юнга характеризует сопротивляемость материала упругой деформации растяжения или сжатия .

Закон Гука, записанный в форме (2), легко привести к виду (1). Действительно, подставив в (2) \(~\sigma = \frac{F_{ynp}}{S}\) и \(~\varepsilon = \frac{\Delta l}{l_0}\) , получим:

\(~\frac{F_{ynp}}{S} = E \cdot \frac{\Delta l}{l_0}\) или \(~F_{ynp} = \frac{E \cdot S}{l_0} \cdot \Delta l\) ,

где \(~\frac{E \cdot S}{l_0} = k\) .

Диаграмма растяжения

Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств (например, с помощью гидравлического пресса) подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения σ от относительного удлинения ε . Этот график называют диаграммой растяжения (рис. 10).

Многочисленные опыты показывают, что при малых деформациях напряжение σ прямо пропорционально относительному удлинению ε (участок ОА диаграммы) – выполняется закон Гука.

Эксперимент показывает, что малые деформации полностью исчезают после снятия нагрузки (наблюдается упругая деформация). При малых деформациях выполняется закон Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности σ п . Он соответствует точки А диаграммы.

Если продолжать увеличивать нагрузку при растяжении и превзойти предел пропорциональности, то деформация становится нелинейной (линия ABCDEK ). Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σ уп . Он соответствует точке В диаграммы. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.

Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK ). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).

За пределом упругости при некотором значении напряжения, соответствующем точке С диаграммы, удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала .

При дальнейшем увеличении нагрузки напряжение повышается (от точки D ), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е ) для дальнейшего удлинения нужно меньшее напряжение, но, в конце концов, наступает разрушение образца (точка К ). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности . Обозначим его σ пч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.

Чтобы свести к минимуму возможность разрушения сооружения, инженер должен при расчетах допускать в его элементах такие напряжения, которые будут составлять лишь часть предела прочности материала. Их называют допустимыми напряжениями. Число, показывающее, во сколько раз предел прочности больше допустимого напряжения, называют коэффициентом запаса прочности . Обозначив запас прочности через n, получим:

\(~n = \frac{\sigma_{np}}{\sigma}\) .

Запас прочности выбирается в зависимости от многих причин: качества материала, характера нагрузки (статическая или изменяющаяся со временем), степени опасности, возникающей при разрушении, и т.д. На практике запас прочности колеблется от 1,7 до 10. Выбрав правильно запас прочности, инженер может определить допустимое в конструкции напряжение.

Пластичность и хрупкость

Тело из любого материала при малых деформациях ведет себя как упругое. В то же время почти все тела в той или иной мере могут испытывать пластические деформации. Существуют хрупкие тела.

Механические свойства материалов разнообразны. Такие материалы, как резина или сталь, обнаруживают упругие свойства до сравнительно больших напряжений и деформаций. Для стали, например, закон Гука выполняется вплоть до ε = 1%, а для резины – до значительно больших ε , порядка десятков процентов. Поэтому такие материалы называют упругими .

У мокрой глины, пластилина или свинца область упругих деформаций мала. Материалы, у которых незначительные нагрузки вызывают пластические деформации, называют пластичными .

Деление материалов на упругие и пластичные в значительной мере условно. В зависимости от возникающих напряжений один и тот же материал будет вести себя или как упругий, или как пластичный. Так, при очень больших напряжениях сталь обнаруживает пластичные свойства. Это широко используют при штамповке стальных изделий с помощью прессов, создающих огромную нагрузку.

Холодная сталь или железо с трудом поддаются ковке молотом. Но после сильного нагрева им легко придать посредством ковки любую форму. Пластичный при комнатной температуре свинец приобретает ярко выраженные упругие свойства, если его охладить до температуры ниже –100 °С.

Большое значение на практике имеет свойство твердых тел, называемое хрупкостью . Тело называют хрупким , если оно разрушается при небольших деформациях . Изделия из стекла и фарфора хрупкие: они разбиваются на куски при падении на пол даже с небольшой высоты. Чугун, мрамор, янтарь также обладают повышенной хрупкостью. Наоборот, сталь, медь, свинец не являются хрупкими.

Отличительные особенности хрупких тел легче всего уяснить с помощью зависимости σ от ε при растяжении. На рисунке 11, а, б изображены диаграммы растяжений чугуна и стали. На них видно, что при растяжении чугуна всего лишь на 0,1% в нем возникает напряжение около 80 МПа, тогда как в стали оно при такой же деформации равно лишь 20 МПа.

Рис. 11

Чугун разрушается сразу при удлинении на 0,45%, почти не испытывая предварительно пластических деформаций. Предел прочности его равен 1,2∙108 Па. У стали же при ε = 0,45% деформация все еще остается упругой и разрушение происходит при ε ≈ 15%. Предел прочности стали равен 700 МПа.

У всех хрупких материалов напряжение очень быстро растет с удлинением, и они разрушаются при весьма малых деформациях. Пластичные свойства у хрупких материй лов практически не проявляются.

Литература

  1. Кабардин О.Ф. Физика: Справ. материалы: Учеб. пособие для учащих-ся. – М.: Просвещение, 1991. – 367 с.
  2. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  3. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.
  4. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физ-матлит, 2004. – 608 с.
  5. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.

Составители

Ванкович Е. (11 «А» МГОЛ № 1), Шкрабов А. (11 «В» МГОЛ № 1).

Лучшие статьи по теме