Для школьников и родителей
  • Главная
  • Развивашки
  • Курсовая работа: Общие приёмы и принципы естественно-научных исследований. Методы естественнонаучного познания

Курсовая работа: Общие приёмы и принципы естественно-научных исследований. Методы естественнонаучного познания

Методы естественнонаучного познания 1 страница

Большое значение для понимания научного познания имеет анализ средств получения и хранения знания. Средства получения знания и есть методы научного познания. Что же такое метод?

Понятие метод (от греч. «методос» - путь к чему-либо) означает совокупность приемов и операций практического и теоретического освоения действительности.

В литературе существуют равные определения метода. Мы будем использовать то, которое, на наш взгляд, подходит к анализу естествознания. Метод - это способ действия субъекта, направленный на теоретическое и практическое овладение объектом.

Под субъектом в широком смысле слова понимается все человечество в его развитии. В узком смысле слова субъект - это отдельная личность, вооруженная знаниями и средствами познания своей эпохи.

Метод вооружает человека системой принципов, требований, правил, руководствуясь которыми он может достичь намеченной цели. Владение методом означает для человека знание того, каким образом, в какой последовательности совершать те или иные действия для решения тех или иных задач, и умение применять это знание на практике.

Учение о методе начало развиваться еще в науке Нового времени. Ее представители считали правильный метод ориентиром в движении к надежному, истинному знанию. Так, видный философ XVII века Ф. Бэкон сравнивал метод познания с фонарем, освещающим дорогу путнику, идущему в темноте. А другой известный ученый и философ того же периода Р. Декарт изложил свое понимание метода следующим образом: «Под методом я разумею точные и простые правила, строгое соблюдение которых... без лишней траты умственных сил, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного познания всего, что ему доступно».

Существует целая область знания, которая специально занимается изучением методов и которую принято именовать методологией. Методология дословно означает «учение о методах» (ибо происходит этот термин от двух греческих слов: «методос» - метод и «логос» - учение). Изучая закономерности человеческой познавательной деятельности, методология вырабатывает на этой основе методы ее осуществления. Важнейшей задачей методологии является изучение происхождения, сущности, эффективности и других характеристик методов познания.

Методы научного познания принято подразделять по степени их общности, т. е. по широте применимости в процессе научного исследования.

Всеобщих методов в истории познания известно два: диалектический и метафизический.Это общефилософские методы. Метафизический метод с середины XIX века начал все больше и больше вытесняться из естествознания диалектическим методом.

Вторую группу методов познания составляют общенаучные методы, которые используются в самых различных областях науки, т. е. имеют весьма широкий междисциплинарный спектр применения. Классификация общенаучных методов тесно связана с понятием уровней научного познания.

Различают два уровня научного познания: эмпирический и теоретический.Одни общенаучные методы применяются только на эмпирическом уровне (наблюдение - целенаправленное восприятие явлений объективной действительности; описание - фиксация средствами естественного или искусственного языка сведений об объектах; измерение - сравнение объектов по каким-либо сходным свойствам или сторонам; эксперимент-наблюдение в специально создаваемых и контролируемых условиях, что позволяет восстановить ход явления при повторении условий), другие - только на теоретическом (идеализация, формализация), а некоторые (например, моделирование) - как на эмпирическом, так и на теоретическом уровнях.

Эмпирический уровень научного познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. На этом уровне осуществляется процесс накопления информации об исследуемых объектах, явлениях путем проведения наблюдений, выполнения разнообразных измерений, постановки экспериментов. Здесь производится также первичная систематизация получаемых фактических данных в виде таблиц, схем, графиков и т. п. Кроме того, уже на втором уровне научного познания как следствие обобщения научных фактов - возможно формулирование некоторых эмпирических закономерностей.

Теоретический уровень научного исследования осуществляется на рациональной (логической) ступени познания. На данном уровне происходит раскрытие наиболее глубоких, существенных сторон, связей, закономерностей, присущих изучаемым объектам, явлениям. Теоретический уровень - более высокая ступень в научном познании. Результатами теоретического познания становятся гипотезы, теории, законы.

Выделяя в научном исследовании указанные два различных уровня, не следует, однако, их отрывать друг от друга и противопоставлять. Ведь эмпирический и теоретический уровни познания взаимосвязаны между собой. Эмпирический уровень выступает в качестве основы, фундамента теоретического осмысления научных фактов, статистических данных, получаемых на эмпирическом уровне. К тому же теоретическое мышление неизбежно опирается на чувственно-наглядные образы (в том числе схемы, графики и т. п.), с которыми имеет дело эмпирический уровень исследования.

В свою очередь, эмпирический уровень научного познания не может существовать без достижений теоретического уровня. Эмпирическое исследование обычно опирается на определенную теоретическую конструкцию, которая определяет направление этого исследования, обусловливает и обосновывает применяемые при этом методы.

К всеобщим методам, применяемым не только в науке, но и в других отраслях человеческой деятельности относятся:

анализ - расчленение целостного предмета на составные части (стороны, признаки, свойства или отношения) с целью их всестороннего изучения;

синтез - соединение ранее выделенных частей предмета в единое целое;

абстрагирование - отвлечение от ряда несущественных для данного исследования свойств и отношений изучаемого явления с одновременным выделением интересующих нас свойств и отношений;

обобщение - прием мышления, в результате которого устанавливаются общие свойства и признаки объектов;

индукция - метод исследования и способ рассуждения, в котором общий вывод строится на основе частных посылок;

дедукция - способ рассуждения, посредством которого из общих посылок с необходимостью следует заключение частного характера;

аналогия - прием познания, при котором на основе сходства объектов в одних признаках заключают об их сходстве и в других признаках;

моделирование - изучение объекта (оригинала) путем создания и исследования его копии (модели), замещающей оригинал с определенных сторон, интересующих исследователя;

классификация - разделение всех изучаемых предметов на отдельные группы в соответствии с каким-либо важным для исследователя признаком (особенно часто используется в описательных науках- многих разделах биологии, геологии, географии, кристаллографии и т.п.).

К третьей группе методов научного познания относятся методы, используемые только в рамках исследований какой-то конкретной науки или какого-то конкретного явления. Такие методы именуются частнонаучными. Каждая частная наука (биология, химия, геология и т. д.) имеет свои специфические методы исследования.

При этом частнонаучные методы, как правило, содержат в различных сочетаниях те или иные общенаучные методы познания. В частнонаучных методах могут присутствовать наблюдения, измерения, индуктивные или дедуктивные умозаключения и т. д. Характер их сочетания и использования находится в зависимости от условий исследования, природы изучаемых объектов. Таким образом, частнонаучные методы не оторваны от общенаучных. Они тесно связаны с ними, включают в себя специфическое применение общенаучных познавательных приемов для изучения конкретной области объективного мира.

Частнонаучные методы связаны и с всеобщим диалектическим методом, который как бы преломляется через них. Например, всеобщий диалектический принцип развития проявился в биологии в виде открытого Ч. Дарвином естественноисторического закона эволюции животных и растительных видов.

Большое значение в современной науке приобрели статистические методы, позволяющие определять средние значения, характеризующие всю совокупность изучаемых предметов. «Применяя статистический метод, мы не можем предсказать поведение отдельного индивидуума совокупности. Мы можем только предсказать вероятность того, что он будет вести себя некоторым определенным образом.

Статистические законы можно применять только к системам с большим количеством элементов, но не к отдельным индивидуумам, или объектам.

Характерной особенностью современного естествознания является также то, что методы исследования все в большей степени влияют на его результат (так называемая «проблема прибора» в квантовой механике).

Необходимо добавить, что любой метод сам по себе еще не предопределяет успеха в познании тех или иных сторон материальной действительности. Важно еще умение правильно применять научный метод в процессе познания.

1.3 Структура естественнонаучного познания

Структура научного исследования представляет собой в широком смысле способ научного познания или научный метод как таковой.

Итак, мы начали научное исследование, мы зафиксировали первый эмпирический факт, который, и стал научным фактом.

Эти факты сопровождаются наблюдением, и в некоторых областях естествознания этот метод остается единственным и главным эмпирическим методом исследования. Например, в астрономии.

Мы можем ускорить исследование, т.е. провести эксперимент, испытать объект исследований. Особенность научного эксперимента заключается в том, что его может воспроизвести каждый исследователь в любое время.

Во время эксперимента стоит задуматься, есть ли что-либо общее в поведении объектов, которые на первый взгляд ведут себя совершенно различно? Найти аналогии в различиях - необходимый этап научного исследования.

Не над всеми телами можно провести эксперимент. Например, небесные светила можно только наблюдать. Но мы можем объяснить их поведение действием тех же самых сил, направленных не только в сторону Земли, но и от нее. Различие в поведении, таким образом, можно объяснить количеством силы, определяющей взаимодействие двух или нескольких тел.

Если мы все-таки считаем эксперимент необходимым, то можем провести его на моделях, т.е. на телах, размеры и масса которых пропорционально уменьшены по сравнению с реальными телами. Результаты модельных экспериментов можно считать пропорциональными результатам взаимодействия реальных тел.

Помимо модельного эксперимента, возможен мысленный эксперимент. Для этого понадобится представить себе тела, которых вообще не существует в реальности, и провести над ними эксперимент в уме.

В современной науке надо быть готовым к идеализированным экспериментам, т.е. мысленным экспериментам с применением идеализации, с которых (а именно, экспериментов Галилея) и началась физика Нового времени. Представление и воображение (создание и использование образов) имеет в науке большое значение, но в отличие от искусства это - не конечная, а промежуточная цель исследования. Главная цель науки - выдвижение гипотез и теория как эмпирически подтвержденная гипотеза.

Понятия играют в науке особую роль. Еще Аристотель считал, что, описывая сущность, на которую указывает термин, мы объясняем его значение. А его имя - знак вещи. Таким образом, объяснение термина (а это и представляет собой определение понятия) позволяет понять данную вещь в ее глубочайшей сущности («понятие» и «понять» - однокоренные слова). Научные термины и знаки не что иное, как условные сокращения записей, которые иначе заняли бы гораздо больше места.

Формирование понятий относится к следующему уровню исследований, который является не эмпирическим, а теоретическим. Но прежде мы должны записать результаты эмпирических исследований, с тем, чтобы каждый желающий мог их проверить и убедиться в их правильности.

На основании эмпирических исследований могут быть сделаны эмпирические обобщения, которые имеют значение сами по себе. В науках, которые называют эмпирическими, или описательными, как, скажем, геология, эмпирические обобщения завершают исследование; в экспериментальных, теоретических науках это только начало. Чтобы двинуться дальше, нужно придумать удовлетворительную гипотезу, объясняющую явление. Самих по себе эмпирических фактов для этого недостаточно. Необходимо все предшествующее знание.

На теоретическом уровне, помимо эмпирических фактов, требуются понятия, которые создаются заново или берутся из других (преимущественно ближайших) разделов науки. Эти понятия должны быть определены и представлены в краткой форме в виде слов (называемых в науке терминами) или знаков (в том числе математических), которые имеют каждый строго фиксированное значение.

При выдвижении какой-либо гипотезы принимается во внимание не только ее соответствие эмпирическим данным, но и некоторые методологические принципы, получившие название критериев простоты, красоты, экономии мышления и т.п.

После выдвижения определенной гипотезы (научного предположения, объясняющего причины данной совокупности явлений) исследование опять возвращается на эмпирический уровень для ее проверки. При проверке научной гипотезы должны проводиться новые эксперименты, задающие природе новые вопросы, исходя из сформулированной гипотезы. Цель - проверка следствий из этой гипотезы, о которых ничего не было известно до ее выдвижения.

Если гипотеза выдерживает эмпирическую проверку, то она приобретает статус закона (или, в более слабой форме, закономерности) природы. Если нет - считается опровергнутой, и поиски иной, более приемлемой, продолжаются. Научное предположение остается, таким образом, гипотезой до тех пор, пока еще не ясно, подтверждается она эмпирически или нет. Стадия гипотезы не может быть в науке окончательной, поскольку все научные положения в принципе эмпирически опровергаемы, и гипотеза рано или поздно или становится законом или отвергается.

Проверочные эксперименты ставятся таким образом, чтобы не столько подтвердить, сколько опровергнуть данную гипотезу. Эксперимент, который направлен на опровержение данной гипотезы, носит название решающего эксперимента. Именно он наиболее важен для принятия или отклонения гипотезы, так как одного его достаточно для признания гипотезы ложной.

Естественные законы описывают неизменные регулярности, которые либо есть, либо нет. Их свойствами являются периодичность и всеобщность какого-либо класса явлений, т.е. необходимость их возникновения при определенных точно формулируемых условиях.

Итак, естествознание изучает мир с целью творения законов его функционирования, как продуктов человеческой деятельности, отражающих периодически повторяющиеся факты действительности.

Совокупность нескольких законов, относящихся к одной области познания, называется теорией. В случае, если теория в целом не получает убедительного эмпирического подтверждения, она может быть дополнена новыми гипотезами, которых, однако, не должно быть слишком много, так как это подрывает доверие к теории.

Подтвержденная на практике теория считается истинной вплоть до того момента, когда будет предложена новая теория, лучше объясняющая известные эмпирические факты, а также новые эмпирические факты, которые стали известны уже после принятия данной теории и оказались противоречащими ей.

Итак, наука строится из наблюдений, экспериментов, гипотез, теорий и аргументации. Наука в содержательном плане - это совокупность эмпирических обобщений и теорий, подтверждаемых наблюдением и экспериментом. Причем творческий процесс создания теорий и аргументации в их поддержку играет в науке не меньшую роль, чем наблюдение и эксперимент.

Схематично структуру научного познания можно представить следующим образом:

Эмпирический факт → научный факт → наблюдение → реальный эксперимент → модельный эксперимент → мысленный эксперимент → фиксация результатов эмпирического уровня исследований → эмпирическое обобщение → использование имеющегося теоретического знания → образ → формулирование гипотезы → проверка ее на опыте → формулирование новых понятий → введение терминов и знаков → определение их значения → выведение закона → создание теории → проверка ее на опыте → принятие в случае необходимости дополнительных гипотез.

Что интересует естествознание? Проблемы, которые возникают в этой весьма обширной области познания самые разнообразные - от устройства и происхождения Вселенной до познания молекулярных механизмов существования уникального Земного явления - Жизни.

А как называют ученых, работающих в области естествознания? В далекие времена Аристотель (384-322 до н.э.) называл их физиками или физиологами, ибо древнегреческое слово физис, очень близкое русскому слову природа, первоначально означало происхождение, создание.

В настоящее время спектр научных исследований в естествознании необыкновенно широк. В систему естественных наук, помимо основных наук: физики, химии и биологии включаются также и множество других - география, геология, астрономия, и даже науки, стоящие на границе между естественными и гуманитарными науками - например, психология. Целью психологов является изучение поведения человека и животных. С одной стороны, психология опирается на научные достижения биологов, работающих в области физиологии высшей нервной деятельности и наблюдающих за деятельностью мозга. С другой стороны, эта наука занимается и социальными, т. е. общественными явлениями, привлекая знания из области социологии. Социальная психология, например, исследует взаимоотношения групп людей в обществе. Психология, аккумулируя знания всех естественных наук, представляет собой как бы мостик, перекинутый от высшей ступеньки естественного знания к наукам, целью познания которых являются Человек и Общество.

Изучая гуманитарные науки, студенты должны представлять их взаимосвязь с науками, изучающими Природу. Экономистам не обойтись без знания географии и математики, философам - без основ натурфилософии; социологи взаимодействуют с психологами, а реставраторы старинных картин прибегают к помощи современной химии и т. д. Таких примеров можно привести бесчисленное множество.

Существует два широко распространенных определения понятия естествознания.

1). Естествознание - это наука о Природе как единой целостности. 2). Естествознание - это совокупность наук о Природе, рассматриваемых как единое целое.

Отличием естествознания как науки от специальных естественных наук является то, что оно исследует одни и те же природные явления сразу с позиций нескольких наук, "выискивая" наиболее общие закономерности и тенденции, рассматривает Природу как бы сверху. Естествознание, признавая специфику, входящих в него наук, в то же время имеет своей главной целью исследование Природы как единого целого.

Зачем же следует изучать естествознание? Для того чтобы четко представить себе подлинное единство Природы, то единое основание, на котором построено все разнообразие предметов и явлений Природы и из которого вытекают основные законы, связывающие микро- и макромиры: Землю и Космос, физические и химические явления между собой, жизнью, разумом. Изучая отдельные естественные науки, невозможно познать Природу как единое целое. Поэтому изучение предметов по отдельности - физики, химии и биологии, - является лишь первой ступенькой к познанию Природы во всей ее целостности, т.е. познанию ее законов с общей естественнонаучной позиции. Отсюда вытекают и цели естествознания, которые представляют собой двойную задачу.

Цели естествознания:

1. Выявление скрытых связей, создающих органическое единство всех физических, химических и биологических явлений.

2. Более глубокое и точное познание самих этих явлений.

Единство объектов исследования приводит к тому, что появляются новые, так называемые междисциплинарные науки, стоящие на стыке нескольких традиционных естественных наук. Среди них - биофизика, физическая химия, физико-химическая биология, психофизика и т.д.

Тенденции такого единения или интеграции естественнонаучных знаний стали проявляться очень давно. Еще в 1747-1752 годах М. В. Ломоносов (1711-1765) обосновал необходимость привлечения физики для объяснения химических явлений. Он придумал имя для новой науки, назвав ее физической химией.

Кроме физики, химии и биологии к естественным наукам относятся и другие, например, геология и география, которые имеют комплексный характер. Геология изучает состав и строение нашей планеты в их эволюции на протяжении миллиардов лет. Ее основные разделы - минералогия, петрография, вулканология, тектоника и т.д. - это производные от кристаллографии, кристаллофизики, геофизики, геохимии и биогеохимии. Также и география "пропитана" физическими, химическими и биологическими знаниями, которые в разной степени проявляются в таких ее основных разделах, как: физическая география, география почв и т.д. Таким образом, все исследования Природы сегодня можно представить в виде огромной сети, связывающей многочисленные ответвления физических, химических и биологических наук.

2.2 Тенденции развития современного естествознания

Интеграция науки, появление новых смежных дисциплин в естествознании - все это знаменует собой нынешний этап развития науки. Всего же (с точки зрения истории науки) человечество в своем познании Природы прошло три стадии и вступает в четвертую.

На первой из них сформировались общие представления об окружающем мире как о чем-то целом, едином. Появилась так называемая натурфилософия, которая была вместилищем идей и догадок. Так продолжалось до XV столетия.

С XV-XVI веков началась аналитическая стадия, т.е. расчленение и выделение частностей, приведших к возникновению и развитию физики, химии и биологии, а также целого ряда других, более частных естественных наук.

Наконец, в настоящее время делаются попытки обосновать принципиальную целостность всего естествознания и ответить на вопрос: почему именно физика, химия, биология и психология стали основными и как бы самостоятельными разделами науки о Природе?

Происходит также и дифференциация науки, т.е. создание узких областей какой-либо науки, однако, общая тенденция идет именно к интеграции науки. Поэтому последнюю стадию (четвертую) начинающую осуществляться, называют интегрально-дифференциальной.

В настоящее время нет ни одной области естественно - научных исследований, которые относились бы исключительно к физике, химии или биологии в чистом виде. Все эти науки "пронизаны" общими для них законами Природы.

1.3. Математика - универсальный язык точного естествознания

Выдающийся итальянский физик и астроном, один из создателей точного естествознания Галилео Галилей (1564-1642) сказал: "Тот, кто хочет решать вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является".

Необходимая для точного естествознания математика начинается с простейшего счета и со всевозможных простейших измерений. По мере своего развития точное естествознание использует все более совершенный математический арсенал так называемой высшей математики.

Математика, как логический вывод и средство познания Природы, - творение древних греков, которым они начали всерьез заниматься за шесть веков до нашей эры. Начиная с VI в. до н.э. у греков сложилось понимание того, что Природа устроена рационально, а все явления протекают по точному плану, - "математическому".

Немецкий философ Иммануил Кант (1724-1804) утверждал в своих "Метафизических началах естествознания", что: "В любом частном учении о природе можно найти науки в собственном смысле (т.е. чистой, фундаментальной) лишь столько, сколько имеется в ней математики". Здесь стоит привести и высказывание Карла Маркса (1818-1883) о том, что: "Наука только тогда достигает совершенства, когда ей удается пользоваться математикой".

При работе над общей теорией относительности, да и в дальнейшем, А.Эйнштейн (1879-1955) непрерывно совершенствовался в изучении и применении математики, причем самых новейших и сложных ее разделов.

Из всех высказываний великих людей следует, что математика - это "цемент", который связывает воедино науки, входящие в естествознание и позволяет взглянуть на него как на целостную науку.

3 Этапы развития естествознания

3.1 Попытка научной систематизации картины мира. Естественнонаучная революция Аристотеля

Усвоить естествознание легче, исследуя его развитие во времени. Дело в том, что в систему современного естествознания, наряду с новыми науками о Природе, входят и такие исторические области знаний, как древнегреческая натурфилософия, естествознание Средневековья, наука Нового времени и классическое естествознание до начала XX века. Это поистине бездонная сокровищница всех знаний, приобретенных человечеством за долгие годы своего существования на нашей планете.

Попытка понять и объяснить мир без привлечения таинственных сил была впервые предпринята древними греками. В VII-VI в.в. до н.э. в Древней Греции появились первые научные учреждения: академия Платона, лицей Аристотеля, Александрийский музей. Именно в Греции была впервые выдвинута идея о единой материальной основе мира и его развитии. Самой гениальной была идея атомистического строения материи, впервые высказанная Левкиппом (500-400 до н.э.) и развитая его учеником Демокритом (460-370 до н.э.).

Суть учения Демокрита сводится к следующему:

1. Не существует ничего, кроме атомов и чистого пространства (т.е. пустоты, небытия).

2. Атомы бесконечны по числу и бесконечно разнообразны по форме.

3. Из "ничего" не происходит ничего.

4. Ничто не совершается случайно, а только по какому-либо основанию и в связи с необходимостью.

5. Различие между вещами происходит от различия их атомов в числе, величине, форме и порядке.

Развивая учения Демокрита, Эпикур (341-270 до н.э.) пытался объяснить на основе атомных представлений все естественные, психические и социальные явления. Если суммировать все воззрения Демокрита и Эпикура, то, имея хорошее воображение, можно увидеть в их трудах зачатки атомной и молекулярно-кинетической теории. Учение древнегреческих атомистов дошло до нас через знаменитую поэму "О природе вещей" Лукреция (99-56 до н.э.).

По мере накопления знаний о мире задача их систематизации становилась все более актуальной. Эта задача была выполнена одним из величайших мыслителей древности, учеником Платона - Аристотелем (384-322 до н.э.). Аристотель был наставником Александра Македонского, вплоть до его смерти. Аристотелем было написано много работ. В одной из них - "Физике", он рассматривает вопросы о материи и движении, о пространстве и времени, о конечном и бесконечном, о существующих причинах.

В своей другой работе - "О небе" он привел два веских довода в пользу того, что Земля не плоская тарелка (как считали в то время), а круглый шар.

Во-первых, Аристотель догадался, что лунные затмения происходят тогда, когда Земля оказывается между Луной и Солнцем. Земля всегда отбрасывает на Луну круглую тень, а это может быть лишь в том случае, если Земля имеет форму шара.

Во-вторых, из опыта своих путешествий греки знали, что, в южных районах Полярная звезда на небе располагается ниже, чем в северных. Полярная звезда на Северном полюсе находится прямо над головой наблюдателя. Человеку же на экваторе кажется, что она располагается на линии горизонта. Зная разницу в кажущемся расположении Полярной звезды в Египте и Греции, Аристотель сумел вычислить длину экватора! Правда эта длина получилась несколько большей (примерно в два раза), но все равно в те времена это было крупное научное открытие.

Аристотель полагал, что Земля неподвижна, а Солнце, Луна, планеты и звезды обращаются вокруг нее по круговым орбитам.

Интересно, что первые глобальные научные открытия были сделаны учеными не в земной области, а в области Вселенской, космической. Именно из этих астрономических знаний родилась новая картина строения Вселенной, разрушая все старые привычные представления об окружающем людей мире. Эти знания настолько изменили и само мировоззрение всех живших в то время людей, что силу их воздействия на умы можно сравнить разве что с революцией - резкой переменой взглядов на устройство мира. Такие "перевороты" в основах знаний в научном мире так и называются - естественнонаучные революции.

Каждая глобальная естественнонаучная революция начинается именно с астрономии (величайший пример - создание теории относительности). Решая чисто астрономические проблемы, ученые начинают ясно понимать, что у современной науки нет достаточных оснований для ее объяснения. Далее начинается радикальный пересмотр всех имеющихся космологических представлений о мире и о Вселенной в целом. Завершается естественнонаучная революция (если дело доходит до этого) возведением нового физического фундамента под новые, радикально пересмотренные космологические представления обо всем мироздании.

Вопросы для самопроверки

1. Вопрос: Что такое познание?

а) Получение информации об избранном явлении природы.

б) Проведение экспериментальной работы.

в) Построение гипотез на основе экспериментальных данных, их теоретическое обобщение и формирование прогноза дальнейшего развития избранного направления исследования.

г) Создание совершенной теории и попытки ее экспериментального подтверждения.

2. Вопрос: Что такое системность, как один из принципов познания?

а) Четкость определений в экспериментальных исследованиях.

б) Взаимосвязь разносторонних подходов к изучению избранной проблемы.

в) Определенность решения проблемы избранным способом.

г) Взаимосвязанность положительных и отрицательных точек зрения.

3. Вопрос: Что такое «концепция»?

а) Точка зрения отдельного ученого на установленный научный факт.

б) Система теоретических положений характеризующих группу аналогичных явлений природы.

в) Научное исследование, опирающееся только на теоретическое обоснование.

г) Подробное описание отдельного объекта исследования.

4. Вопрос: Что представляет собой предмет «Концепции современного естествознания»?

а) Изучение принципов эволюции Вселенной.

б) Экспериментальное исследование возникновения человека.

в) Познание наиболее общих естественнонаучных концепций, принципов, законов организации Вселенной.

г) Изучение математических моделей процессов и явлений на Земле.

5. Вопрос: Что такое научные знания?

а) Универсальная экспериментальная база.

б) Группа гипотез посвященных глобальной проблеме мироздания.

в) Вся совокупность разнообразных экспериментально – теоретических научных дисциплин.

г) Футуристические представления о судьбе Вселенной.

6. Вопрос: Что означает «фундаментальность» научных знаний?

а) Теологическая обоснованность научных утверждений.

б) Универсальность научных знаний, основанная на системе базовых концепций.

в) Логичность в решении конкретной научной проблемы.

г) Последовательность в постановке задачи исследования.

7. Вопрос: Как Вы понимаете «проверяемость» научных знаний?

а) Возможность независимым методом исследования получить сходные результаты.

б) Выяснение механизмов течения процессов.

в) Участие в исследовании контрольной группы экспертов.

г) Субъективные представления исследователя.

8. Вопрос: Что такое «универсальность» научных знаний?

а) Результаты научных исследований, не зависящие от способа их получения.

б) Применимость результатов исследования в различных областях науки.

в) Совпадение результатов исследования в разные промежутки времени.


г) Высокая точность результатов исследования.

9. Вопрос: Что такое «опровержимость» научных данных?

а) Постоянная повторяемость результатов исследования.

б) Способность обосновать направление исследования.

в) Совершенствование системы управления исследованием.

г) Отрицание прежних результатов исследования за счет полученных новых данных.

10. Вопрос: Что такое «прикладные» исследования?

а) Исследования, позволяющие делать какие-либо предположения.

б) Исследования, позволяющие применять научные результаты для осуществления прикладных, технологических задач.

в) Исследования во вспомогательных направлениях развития технологий.

г) Изучение дополнительных свойств концепций, теорий.

11. Вопрос: Что представляют собой информационно-мониторинговая группа методов исследования?

а) Группа методов, позволяющая объективно обобщать литературные данные.

б) Группа методов, позволяющая систематизировать знания по избранному объекту.

в) Группа методов, позволяющая обобщать систематические, периодически проводимые наблюдения и эксперименты.

г) Группа методов объединения теоретических и теологических исследований одного и того же объекта.

12. Что представляет собой теоретико-аналитическая группа методов исследования?

а) Группа теоретических методов, позволяющих проанализировать данные исследования, теоретически обобщить их с ранее полученными или уже известными и сделать прогноз о свойствах еще не открытых подобных явлений.

б) Группа теоретических методов, позволяющая сделать частные выводы о состоянии избранного объекта исследования.

в) Группа экспериментальных методов для изучения наиболее общих явлений природы.

г) Группа методов для всестороннего изучения свойств избранного объекта.

13. Вопрос: Что обозначает термин «естественнонаучная культура»?

а) Система религиозных представлений о природе.

б) Исторический подход в изучении развития общества.

в) Система научных взглядов и базовых представлений, позволяющая глубже понять природные явления.

г) Социальные принципы развития науки.

14. Вопрос: Что представляет собой «гуманитарная культура»?

а) Система взглядов и концепций отражающих развитие общества, его гуманитарные ценности.

б) Уровень развития литературы.

в) Степень социальной активности человека.

г) Особенности психологической активности человека в определении его роли в социуме.

15. Назовите основные принципы объединения естественнонаучной и гуманитарной культуры.

а) Стремление индивида к совершенствованию гуманитарных знаний о свойствах того или иного природного объекта.

б) Формирование разностороннего представления об окружающем нас мире во всех его проявлениях: естественнонаучном и гуманитарном.

в) Стремление совершенствовать естественнонаучные представления о формировании Вселенной.

г) Возможность разностороннего описания поведения индивида в обществе.

Вопросы к зачету по теме

1. Какова цель изучения данной дисциплины?

Методология естественнонаучного познания

Лекция 1: «Основные положения методологии естественнонаучного познания.

Научное познание окружающего мира представляет собой систему теорий, получивших на определенном историческом этапе и экспериментальное подтверждение; современных методов теоретического и экспериментального исследования; гипотез, предполагающих перспективное развитие научных представлений.

Благодаря своей точности и объективности именно научное познание стало методологическим фундаментом естествознания в современном эволюционирующем мире.

Основа современного научного познания - естественнонаучный подход, основанный на последних достижениях науки. В нем объединены современные достижения физики, химии, биологии, медицины и смежных с ними дисциплин, прежде всего, в философском, концептуальном, понятийном плане.

Важнейшим инструментом естественнонаучного подхода является метод научного познания – многократно отработанная, постоянно совершенствующаяся, благодаря полученным новым знаниям, система действий, приводящая к новым, возможно теоретически предсказанным результатам.

Например, человек одевается, используя при этом навыки, полученные им еще в детстве, но новые формы одежды требуют от него использования этого опыта для освоения новых форм одежды. Применение телескопа, как метода исследования, позволяет изучать различные участки Вселенной, как уже известные, так и новые, с совершенно новыми свойствами. Микроскопия – метод, открывающий ученым двери в микромир: мир изученных и совершено новых микрочастиц и организмов.

Краеугольным камнем представления о методе научного познания являетсяметодология - наука о его структуре, оптимизации применения, учение о принципах, формах и способах (методах) организации научной деятельности: теоретических и экспериментальных исследований.

Впервые основные черты метода научного познания были сформулированы Рене Декартом (1596 - 1650).

В их основе представления об истине , как о предмете познания: обязательной достоверности научных знаний; научном факте, как объекте изучения и единстве теоретического, и эмпирического подхода в исследовании.

Мы должны понимать, что абсолютная истина недостижима . Ее поиск вечен и каждый раз, устанавливая какой-либо уровень истинности того или иного факта, цивилизация на шаг продвигается вперед по бесконечному пути познания природы. Поэтому, правильно говорить об истинности данного научного факта при существующем уровне познания : развитии науки, технологическом обеспечении.

Аналогично можно представить себе достоверность научных знаний . Достоверность, т.е. «полная» проверяемость научных фактов осуществляется с точностью до чувствительности исследовательских приборов, существующих методов изучения, признанных, на данном этапе, научных теорий.

Нужно ли, понимая все это, стремиться к максимальной достоверности научных данных? Конечно да. Ведь только максимальная достоверность сегодня, обеспечивает прочную теоретическую базу исследования завтра, с которой, в свою очередь, будет сделан рывок на очередной уровень достоверности.

Научный факт – событие, существующее независимо от наших ощущений и возможностей его изучения. Главной проблемой является его выявление, понимание, интерпретация в рамках существующей научной базы и, если последнее невозможно, доказательная корректировка научных знаний по данному вопросу.

Но есть действительно непреложная истина в научном познании. Это единство теоретического и эмпирического подхода в исследовании. Интересно, что эти подходы очень редко могут быть применены одновременно.

Экспериментально е обнаружение того или иного явления ведет за собой его теоретическое осмысление. Например, экспериментальное обнаружение сверхтекучести гелия дало толчок к созданию теории сверхтекучести. Наоборот, теоретическое предсказание существования неизвестных химических элементов с определенными свойствами Д.И. Менделеевым позволило, в результате направленных экспериментов получить их.

По признаку применения выделяют две группы методов: экспериментальные (эмпирические) и теоретические . Возможна и комбинация этих двух групп методов.

К экспериментальным методам относят непосредственное получение информации об объекте исследования, например наблюдение – восприятие событий окружающего нас мира: мы видим (наблюдаем) смену дня и ночи, появление снега зимой и зелени весной; эксперимент – целенаправленное изучение объектов или явлений окружающего нас мира, искусственно переводя их, с помощью произвольного внешнего воздействия, в необходимые для исследования условия. Например, получение электрокардиограммы человека, изучение структурных свойств минералов, металлов, строения вещества с применением современного экспериментального оборудования. Измерение – экспериментальное определение тех или иных количественных характеристик объекта или явления окружающего нас мира с помощью измерительных приборов. Простейшим измерительным прибором является деревянный метр для измерения ткани. В современной науке не существует инструментальных методов, не использующих количественных характеристик объекта исследования. Описание – метод, позволяющий фиксировать результаты наблюдения или эксперимента, как констатацию фактов с их подробным описанием.

Однако, этого не достаточно. Важность науки состоит в умении анализировать, планировать и предсказывать дальнейшее развитие событий. Поэтому экспериментальные методы тесно связаны с теоретическими.

К теоретическим методам относятся: формализация – отображение результатов экспериментов или наблюдений в виде системы обобщающих определений, утверждений или выводов;

аксиоматизация – формирование теоретических построений на основе аксиом – утверждений, не требующих доказательств. Например, изучаемая в средней школе, геометрия Евклида основана на нескольких аксиомах; гипотетико-дедуктивный подход, состоящий в выдвижении каких-либо гипотез и их последующей логической и эмпирической проверки. Например, гипотеза о том, что причины возникновения ветров кроются в большой разности температур на границах атмосферных фронтов и они тем сильнее, чем больше это различие находит свое подтверждение в многочисленных теоретических построениях и результатах эмпирических исследований.

В практической науке широко применяются и взаимно дополняют друг друга все эти методы.

Различают всеобщие, общедоступные и конкретно-научные методы . Наиболее распространены и универсальны всеобщие методы . На них мы остановимся:

анализ и синтез – процессы мысленного или фактического разложения целого на составные части и формирование целого из составных частей;

индукция и дедукция – движение от частного к общему и от общего к частному;

абстрагирование – пренебрежение рядом второстепенных, на взгляд исследователя, особенностей при разработке гипотезы, построении модели и т.д.;

обобщение – выявление наиболее общих признаков у объектов или явлений, позволяющих сопоставить их с чем-либо уже известным;

аналогия – метод позволяющий предсказывать новые свойства объекта или явления, сопоставляя их с уже известными образцами;

моделирование – формирование условного представления (модели) об объекте или явлении на основе знания ряда основных черт или признаков;

классификация – разделение изучаемых объектов или явлений по группам, в соответствии с характеристическими признаками.

Функционально,методы, применяемые для изучения данной дисциплины, делятся на две группы: экспериментально-мониторинговые и теоретико-аналитические .

Сущность первой группы методов состоит в мониторинге экспериментальных данных в различных областях естественных наук, их статистической обработке, систематизации и обобщении.

Вторая группа призвана анализировать полученные обобщенные результаты экспериментов, формировать единые теоретические представления на уровне гипотез, теорий, законов позволяющих не только описывать существующие факты, но и предсказывать новые процессы и явления природы.

Владение методологией науки позволяет правильно, в соответствии с существующей парадигмой или, наоборот, вопреки ней, грамотно, последовательно построить исследование.

Без знания методологии и использования ее принципов исследование приобретает характер запутанного, беспорядочного набора фактов и гипотез. При этом невозможно достичь главной цели научного исследования – формирования обобщенной теории, основанной на результатах системных экспериментов.

Лекция 2: «Классические методологические концепции теории познания»

Не менее важным является изучение методологических концепций научного познания , позволяющих планомерно сформировать научное исследование. Действительно, именно порядок применения научных методов, их структура и взаимосвязь определяет успех научного поиска.

Особенности выбора и применения той или иной методологической концепции научного познания определяются спецификой объекта (объектов) исследования, подходом исследователя к данной проблеме и условиями проведения изучения в зависимости от направления его научных интересов и возможностей оборудования.

Например, изучение какого-либо небесного тела может быть связано с исследованием самых различных проблем: траектории его движения, относительной светимости, поля тяготения и т.д. В каждом случае применяются специализированные методологические схемы и методы исследования.

Значит, важнейшей, первоначальной целью исследователя является выбор методологических подходов, методологических систем познания, позволяющих наиболее эффективно интерпретировать конкретные, научные результаты.

К наиболее известным концепциям методологии научного исследования относятся теория "научных революций" американского историка науки Т.Куна (1922-1996), научно-исследовательские программы И. Лакатоша (1922-1974), концепция "внешнего функционирования" Карла Поппера (1902 – 1994) и концепция физической исследовательской программы М.Д. Ахундова и С.В. Илларионова.

Вообще говоря, научная теория (по К. Попперу) представляет собой своеобразную научную машину, систему, созданную гениальным индивидом. Перед ней поставлены определенные задачи, она снабжена необходимыми (на взгляд автора) методами ее решения, принципами выбора объекта изучения. По сути, научная теория представляет собой рационально обсуждаемое и критически анализируемое изобретение. Внешнее функционирование теории состоит в постоянных столкновениях с другими теориями. Результат этих столкновений определяется критериями верификации (проверяемости) и фальсифицируемости (возможной опровергаемости) избранных теорий. Наиболее устойчивая по этим критериям теория признается наиболее верной на данном этапе исследования.

В основу теории "научных революций" Т. Куна положено учение о "парадигме" - системе концептуальных мировоззренческих представлений общепринятых в современной науке. Примерами таких парадигм могут быть гелиоцентрические представления Н. Коперника, механика И. Ньютона, принципы относительности А. Эйнштейна, системные представления И. Пригожина.

Структурно (по Т. Куну), выделяются два основных этапа в теории познания: период "нормальной" науки – относительно спокойный период накопления новых научных фактов, подтверждающих или опровергающих существующие представления (парадигму) . Например, геоцентрическая картина мира Клавдия Птолемея (90 – 160), господствовала почти полторы тысячи лет, вплоть до конца пятнадцатого века. Основное количество научных фактов не противоречило этой теории, но были такие, объяснить которые с этих позиций было сложно. Прежде всего, по Птолемею, орбиты небесных тел имели сложную петлеобразную конфигурацию, что не всегда соответствовало, например, очень точным, для своего времени, астрономическим наблюдениям датского астронома Тихо Браге (1546 – 1601).

Еще одним, хронологически более поздним примером накопления фактов периода "нормальной" науки являются результаты опыта Майкельсона – Морли по определению зависимости скорости света от направления движения "мирового эфира", основы Вселенной, заполняющей пространство между небесными телами. Содержание самого опыта будет описано ниже, но его результаты никак не вписывались в господствовавшую в то время парадигму мироустройства, основанную на механистических представлениях И. Ньютона. Ожидалось, что по ходу движения "мирового эфира" скорость света будет больше, чем против него.

Но Майкельсон и Морли экспериментального установили постоянство скорости света, не зависимо от направления движения "мирового эфира" или, что, то же самое, скорости источника излучения или приемника!

Новые научные факты, даже не совпадающие с общепринятыми представлениями, не могут сразу изменить общую картину мира, т.е. существующую на тот момент "парадигму", до тех пор, пока количество противоречий не становится критическим. Часто это сопровождается технологическим прорывом в определенных областях науки и техники, позволяющим получить новые научные данные.

Если количество противоречий велико, возникает необходимость смены парадигмы. Изменение содержания парадигмы по Т. Куну называется "научная революция" , сопровождается сменой основных научных приоритетов, конкуренцией гипотез, частных теорий. Ей сопутствует кардинальное изменение базовых концепций, представлений об окружающем нас мире. Формируется новая парадигма. После ее воцарения наступает очередной период "нормальной" науки.

Примером применения концепции Т. Куна в качестве методологической системы исследования может быть выявление механизма перехода от классических представлений И. Ньютона, парадигмы сформулированной им в 1687 г. в трехтомном труде "Математические начала натуральной философии" к релятивистским представлениям А.Эйнштейна об относительности пространственно - временного континуума.

Появлению "научной революции" и новой парадигмы Эйнштейна предшествовал период накопления фактов (период "нормальной" науки), Многие новые факты, например поведение элементарных частиц, искривление проходящего света в поле тяготения Солнца невозможно было объяснить с позиции прежней парадигмы классической науки.

Применение представлений Т. Куна позволяет, в процессе исследования, опереться на уже существующую парадигму, сопоставляя с ней установленные новые научные факты, определить степень их соответствия и возможность постановки вопроса о необходимости ее замены или наоборот, ее подтверждения. Устойчивая тенденция к росту противоречий между новыми научными фактами и прежней парадигмой ведет к постановке вопроса об изменении последней (научной революции).

После воцарения новой парадигмы, вновь наступает период "нормальной" науки, который закончился, в нашем примере, с появлением квантовой механики, рассмотревшей Вселенную и ее элементы как вероятностные волновые образования.

Методологические трудности применения концепции Т. Куна состоят в отсутствии описания механизмов изменения парадигмы под воздействием новых накопленных экспериментальных фактов.

Для решения этой проблемы была разработана концепция научно-исследовательских программ Имре Локатоша, представляющая собой структуированный метод познания. В ее основе "жесткое ядро" сформированное из фундаментальных достаточно обоснованных теоретических концепций, принципиальных подходов, формирующих общепризнанную систему мировоззрения в данной научной области. "Жесткое ядро" дополнено "защитным поясом" вспомогательных гипотез, изменение которых не ведет к изменению структуры важнейших концепций "жесткого ядра". Важными регулирующими элементами являются "негативная эвристика" , призванная исключать любые попытки объяснения новых явлений, не согласующиеся с "жестким ядром и "позитивная эвристика" позволяющая определить направления исследований, в рамках существующего "жесткого ядра". (Кстати, эвристика означает познание).

До тех пор, пока существующие фундаментальные концепции позволяют хоть немного продвигаться вперед, инструменты "позитивной и негативной эвристики будут защищать существующую теоретическую структуру. Однако при возникновении и последующем накоплении большого количества систематизированных аномальных фактов происходит смена прежней научно-исследовательской программы на новую, объясняющую эти явления. Применение исследовательской программы И. Локатоша рассмотрим на примере парадигмы квантовой механики, важнейшие положения которой: концепции Э. Шредингера, В. Гейзенберга и Луи де Бройля, вековые уравнения сформировали "жесткое ядро" исследования.

Квантово – механические методы расчетов структуры микрочастиц и течения процессов сформировали "защитный пояс" вспомогательных гипотез, основанный на негативной и позитивной эвристике.

Накопление большого количества противоречивых фактов ("негативной эвристики") привело к последовательному изменению "защитного пояса" (период "нормальной" науки по Т. Куну), а затем и "жесткого ядра" квантовой механики (научная революция по Т. Куну). Возникла новая парадигма: "концепция самоорганизации систем" Ильи Пригожина (1917 – 2003).

Сложностью концепции И. Локатоша является формирование "жесткого ядра", как совокупности неизменных фундаментальных теорий данного направления науки, что не позволяло динамично применять эту структуру для открытия новых научных областей.

Использование структурных построений методологии для динамичного создания новых концепций было дополнено концепцией физической исследовательской программы (М.Д. Ахундов и С.В. Илларионов). Она состоит в возможности изменения содержания "жесткого ядра": фундаментальные (важнейшие, основные) принципы по И. Локатошу, заменены на базисные – более обобщенные, универсальные, гибкие и изменяемые, позволяющие создавать новые научные дисциплины, направления исследования, планировать возможные открытия.

Важную роль в формировании базисных принципов "жесткого ядра" в рамках концепции физической исследовательской программы играют так называемые "затравочные образы" (С.Н. Жаров) – исходные модельные представления, формирующие первоначальную базисную структуру. В качестве "затравочных образов" (первоначальных мировоззренческих представлений) И. Ньютон использовал понятие корпускул, пустоты, абсолютного пространства и абсолютного времени, сформировавших базис его научно-исследовательской программы.

Дальнейшее развитие этих представлений привело к созданию механики материальной точки (Л. Эйлер), механики твердого тела, гидродинамики, теории машин. Эти преобразования прошли через предварительное постепенное изменение "защитного пояса" гипотез и вспомогательных теорий к новой парадигме (обновленному "жесткому ядру"), сформированному обновленными базисными теориями. Причем превращение фундаментальных представлений в базисные проходит постепенно, по мере их развития и универсализации.

При формировании методологической схемы исследования одновременно используются практически все указанные концепции. Прежде всего, определяется существующая парадигма в избранном направлении науки, формирующие ее фундаментальные принципы ("жесткое ядро"), теоретические представления, оказывающие влияние на фундаментальные теории составляющие "жесткое ядро". На основе новых научных данных, формируется его базисность, возникают новые направления исследований, новые научные методы, что, в конечном счете, приведет к очередной научной революции, изменению парадигмы, "жесткого ядра" фундаментальных и базисных теорий, "защитного пояса", оснащенного положительной и отрицательной эвристикой.

Классические представления о движении тел, основанные на трудах И. Ньютона, сформировали парадигму исследования: "жесткое ядро" фундаментальных теорий, состоящее из законов механики И. Ньютона и закона Всемирного тяготения. На этой базе формируется "защитный пояс" вспомогательных гипотез, теорий, методов, например исследования движения точки в пустоте, среде с сопротивлением (вода, воздух и т.д.). Решение этих задач обеспечило превращение фундаментальных принципов "жесткого ядра" в базисные через изменение структуры "защитного пояса". Базисность позволила применить общие принципы "жесткого ядра" к созданию механики небесных тел, гидродинамики, аэродинамики, механики твердых тел, теории упругости и т.д. Но в период "нормальной" науки произошло накопление данных, приведших к возникновению термодинамики и электродинамики, интерпретация которых в рамках механистической парадигмы оказалась невозможна.

Иначе говоря, возникли условия для новой научной революции.

Обобщая, отметим, что в научно-практической деятельности целесообразно сформировать "жесткое ядро" существующих по данной проблематике принципов, теорий, концепций; сформулировать его как парадигму, в виде обобщенного учения. Выявить более частные гипотезы, теории, принципы, сформировав "защитный пояс", применяя для уточнения методологической структуры "позитивную и негативную эвристику".

Выводы по разделу«Методология естественнонаучного познания»

Научный метод - основа естественнонаучного познания. Наука об его построении и применении называется методология. Знание основных методологических принципов позволяет всесторонне сформировать метод исследования той или иной научной проблемы.

Важную роль в создании метода исследования играет его логическое построение, основанное на классических концепциях Т. Куна, И. Локатоша, К. Поппера, М.Д. Ахундова и С.В. Илларионова.

Метод научного познания представляет собой стройную систему последовательного изучения и теоретического осмысления неизвестного явления природы.

Вопросы для самоконтроля

1. Что является основой современного научного познания?

а) естественнонаучный подход

б) эмпирические исследования

в) теологические исследования

г) научно – фантастические произведения

2. В чем состоит метод научного познания?

а) система действий, приводящая к неоднозначному результату

б) система действий, приводящая к общим теологическим выводам

в) система действий, приводящая к заданному, ожидаемому результату.

г) отдельные действия, несвязанные между собой общей системой

3. В чем сущность методологии научного познания?

а) в изучении отдельных явлений природы применяя микроскопию.

б) в изучении принципов, форм и способов (методов) организации научной деятельности: теоретических и экспериментальных исследований.

в) в изучении особенностей построения теории.

г) в исследовании древних литературных источников и обобщении полученных результатов.

4. Что есть истина, согласно учению Рене Декарта?

а) получения обязательно достоверных научных знаний, с научным фактом, как объектом изучения.

б) получение субъективных данных, основанных на современных методах научного исследования.

в) общие выводы, на основе обобщения исторических знаний

г) обобщенная информация, полученная наиболее авторитетными учеными.

5. Что, с точки зрения Декарта представляет собой достоверность?

а) максимально возможная, в данных условиях проверяемость научных фактов.

б) неопровержимость фактов на данной территории.

в) периодическая повторяемость результатов на избранном лабораторном оборудовании.

г) многократно подтвержденная истина в различных литературных источниках.

6. Что такое научный факт?

а) событие, существующее в нашем мире с точки зрения современных ученых.

б) событие, существующее независимо от наших ощущений и возможностей его изучения.

в) событие, о котором говорится в теологической литературе.

г) событие, которое не существует, но может произойти.

а) методы теоретического осмысления состояния объекта, его основных характеристик.

б) методы непосредственного получения информации об объекте исследования путем проведения с объектом практических действий.

в) методы получения информации путем обмена мнениями с ведущими специалистами в избранной отрасли.

г) методы теологического исследования проблемы.

8. В чем отличие наблюдения от эксперимента?

а) в предварительном определении результата наблюдения.

б) в разработке надежных теоретических представлений о результате эксперимента.

в) отличий наблюдения от эксперимента нет. Это синонимы.

г) в целенаправленном изучении объектов или явлений окружающего нас мира при проведении эксперимента.

9. Что представляют собой теоретические методы?

а) исследование объекта с применением самого современного оборудования.

б) теологическое направление обсуждения проблемы с ведущими учеными.

в) интеллектуальные методы обобщения научных знаний, создания гипотез и теорий.

г) наблюдение за явлением природы и последующее его описание.

10. Что такое формализация?

а) разработка системы формального представления того или иного природного исследования.

б) отображение результатов экспериментов или наблюдений в виде системы обобщающих определений, утверждений или выводов;

в) разработка формальных пределов применения того или иного метода исследования.

г) создание новых представлений в науке, новых методов исследования.

11. Что означает термин «аксиоматизация»?

а) формирование теоретических преставлений на основе предварительного обсуждения результатов экспериментов.

б) философская теория, означающая разностороннее изучение проблемы.

в) формирование теоретических построений на основе аксиом – утверждений, не требующих доказательств.

г) толкование того или иного природного явления на основе чисто теоретических представлений.

12. Что такое гипотетико – дедуктивный метод?

а) метод, состоящий в выдвижении каких-либо гипотез и их последующей логической и эмпирической проверки.

б) метод поведения анализа и синтеза.

в) метод верификации научных данных.

г) метод моделирования какого-либо процесса или явления.

13. Что составляет главную цель научного исследования?

а) создание основных положений методологии научного познания.

б) создание принципов построения научных исследований.

в) разработка гипотезы течения процесса или явления.

г) формирование обобщенной теории, основанной на результатах системных экспериментов.

14. В чем состоит теория американского историка Т. Куна?

а) в создании теоретического метода теории познания.

б) в разработке теории анализа и синтеза.

в) в создании единой системы научных взглядов, общей для ученых всего мира.

г) в чередовании периодов «научных революций» и периодов накопления научных фактов.

15. В чем состоит концепция И. Лакатоша?

а) в отрицании возможности систематизации научного исследования.

б) в создании новой наглядной модели построения эмпирического исследования.

в) в разработке научно – исследовательских программ по фундаментальным проблемам науки.

г) в формировании концепции изучения Вселенной.

Лекция 1. Естествознание.

Основные науки о природе (физика, химия, биология), их сходство и отличия. Естественнонаучный метод познания и его составляющие: наблюдение, измерение, эксперимент, гипотеза, теория

С давних времен человек наблюдал за окружающим миром, от которого зависела его жизнь, пытался понять явления природы. Солнце давало людям тепло и приносило иссушающий зной, дожди поили живительной влагой поля и вызывали наводнения, неисчислимые бедствия несли ураганы и землетрясения. Не зная причин их возникновения, люди приписывали эти действия сверхъестественным силам, но постепенно они стали понимать действительные причины природных явлений и приводить их в определенную систему. Так зародились науки о природе.

Поскольку природа чрезвычайно многообразна, то в процессе ее познания формировались различные естественные науки: физика, химия, биология, астрономия, география, геология и многие другие. Так сформировалась целая совокупность естественных наук. По объектам исследования их можно разделить на две большие группы: науки о живой и неживой природе. Важнейшими естественными науками о живой и неживой природе являются: физика, химия, биология.

Физика наука, которая изучает наиболее общие свойства материи и формы ее движения (механическую, тепловую, электромагнитную, атомную, ядерную). Физика имеет много видов и разделов (общая физика, теоретическая физика, экспериментальная физика, механика, молекулярная физика, атомная физика, ядерная физика, физика электромагнитных явлений и т.д).

Химия наука о веществах, их составе, строении, свойствах и взаимных превращениях. Химия изучает химическую форму движения материи и делится на неорганическую и органическую химию, физическую и аналитическую химию, коллоидную химию и т.д.

Биология – наука о живой природе . Предметом биологии является жизнь как особая форма движения материи, законы развития живой природы. Биология, по-видимому, является самой разветвленной наукой (зоология, ботаника, морфология, цитология, гистология, анатомия и физиология, микробиология, вирусология, эмбриология, экология, генетика и т.д.). На стыке наук возникают смежные науки, такие как физическая химия, физическая биология, химическая физика, биофизика, астрофизика и т.д.

Естествознание наука о природе как единой целостности или совокупность наук о природе, взятая как единое целое.

Физика – наука о природе.

С незапамятных времен люди начали проводить систематические наблюдения за явлениями природы, стремились подметить последовательность происходящих явлений и научились предвидеть ход многих событий в природе. например, смену времен года, время разливов рек и многое другое. Эти свои знания они использовали для определения времени посева, уборки урожая и т.п. Постепенно люди убедились в том, что изучение явлений природы приносит неоценимую пользу.

В русском языке слово “физика” появилось в XVIII веке, благодаря Михаилу Васильевичу Ломоносову, ученому-энциклопедисту, основоположнику отечественной науки, выдающемуся деятелю просвещения, который сделал перевод с первого немецкого учебника по физике. Именно тогда в России и стали серьезно заниматься этой наукой.

Физическое тело – это каждый окружающий нас предмет. Какие вы знаете физические тела? (ручка, книга, парта)

Вещество - это всё то, из чего состоят физические тела. (Показ физических тел, состоящих из разных веществ)

Материя – это всё то, что существует во Вселенной независимо от нашего сознания (небесные тела, растения, животные и др.)

Физические явления – это изменения, происходящие с физическими телами.

Основные физические явления это:

    Механические явления

    Электрические явления

    Магнитные явления

    Световые явления

    Тепловые явления

Методы научного познания:

Соотношение общенаучных методов

Анализ - мысленное или реальное разложение объекта на составляющие его части.

Синтез - объединение познанных в результате анализа элементов в единое целое.

Обобщение - процесс мысленного перехода от единичного к общему, от менее общего, к более общему, например: переход от суждения «этот металл проводит электричество» к суждению «все металлы проводят электричество», от суждения: «механическая форма энергии превращается в тепловую» к суждению «всякая форма энергии превращается в тепловую».

Абстрагирование (идеализация) - мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследования. В результате идеализации из рассмотрения могут быть исключены некоторые свойства, признаки объектов, которые не являются существенными для данного исследования. Пример такой идеализации в механике - материальная точка , т.е. точка, обладающая массой, но лишенная всяких размеров. Таким же абстрактным (идеальным) объектом является абсолютно твердое тело .

Индукция - процесс выведения общего положения из наблюдения ряда частных единичных фактов, т.е. познание от частного к общему. На практике чаще всего применяется неполная индукция, которая предполагает вывод о всех объектах множества на основании познания лишь части объектов. Неполная индукция, основанная на экспериментальных исследованиях и включающая теоретическое обоснование называется научной индукцией. Выводы такой индукции часто носят вероятностный характер. Это рискованный, но творческий метод. При строгой постановке эксперимента, логической последовательности и строгости выводов она способна давать достоверное заключение. По словам известного французского физика Луи де Бройля, научная индукция является истинным источником действительно научного прогресса.

Дедукци я - процесс аналитического рассуждения от общего к частному или менее общему. Она тесно связана с обобщением. Если исходные общие положения являются установленной научной истиной, то метом дедукции всегда будет получен истинный вывод. Особенно большое значение дедуктивный метод имеет в математике. Математики оперируют математическими абстракциями и строят свои рассуждения на общих положениях. Эти общие положения применяются к решению частных, конкретных задач.

Аналогия - вероятное, правдоподобное заключение о сходстве двух предметов или явлений в каком-либо признаке, на основании установленного их сходства в других признаках. Аналогия с простым позволяет понять более сложное. Так, по аналогии с искусственным отбором лучших пород домашних животных Ч.Дарвин открыл закон естественного отбора в животном и растительном мире.

Моделирование - воспроизведение свойств объекта познания на специально устроенном его аналоге - модели. Модели могут быть реальными (материальными), например, модели самолетов, макеты зданий. фотографии, протезы, куклы и т.п. и идеальными (абстрактными), создаваемые средствами языка (как естественного человеческого языка, так и специальных языков, например, языком математики. В этом случае мы имеем математическую модель . Обычно это система уравнений, описывающая взаимосвязи в изучаемой системе.

Исторический метод подразумевает воспроизведение истории изучаемого объекта во всей своей многогранности, с учетом всех деталей и случайностей.

Логический метод - это, по сути, логическое воспроизведение истории изучаемого объекта. При этом история эта освобождается от всего случайного, несущественного, т.е. это как бы тот же исторический метод, но освобожденный от его исторической формы .

Классификация - распределение тех или иных объектов по классам (отделам, разрядам) в зависимости от их общих признаков, фиксирующее закономерные связи между классами объектов в единой системе конкретной отрасли знания. Становление каждой науки связано с созданием классификаций изучаемых объектов, явлений.

Методы эмпирического познания

Наблюдения (презентация): мы можем наблюдать за деревьями, узнавать что некоторые из них сбрасывают листву, что бревно плывет в воде, что стрелка компаса указывает на север. При наблюдения мы не вмешиваемся в тот процесс, которые наблюдаем.

Накопив за время наблюдений определенные данные о явлениях, мы пытаемся выяснить, как эти явления протекают и почему. В ходе таких размышлений рождаются различные предположения или гипотезы . Для проверки гипотезы ставят специальные опыты – эксперименты . Эксперимент предполагает активное взаимодействие человека с наблюдаемым явлением. Во время экспериментов обычно производят измерения. Эксперимент предполагает наличие определенной цели и заранее продуманный план действий. Выдвигая ту или иную гипотезу, мы с помощью эксперимента можем подтвердить или опровергнуть нашу гипотезу.

Наблюдение - организованное, целенаправленное, фиксируемое восприятие явлений с целью их изучения в определённых условиях.

Гипотеза - это слово греческого происхождения, дословно переводится как "основание", "предположение". В современном понимании не доказанная теория или предположение. Гипотеза выдвигается на основе наблюдений или опытов.

Опыт - метод исследования некоторого явления в управляемых условиях. Отличается от наблюдения активным взаимодействием с изучаемым объектом

Иногда во время опытов по изучению известных природных явлений обнаруживается новое физическое явление. Так делается научное открытие .

Физическая величина – это характеристика, которая является общей для нескольких материальных объектов или явлений в качественном отношении, но может принимать индивидуальные значения для каждого из них.

Измерить физическую величину – значит сравнить её с однородной величиной, принятой за единицу.

Примеры физических величин – путь, время, масса, плотность, сила, температура, давление, напряжение, освещённость и т.п.

Физические величины бывают скалярные и векторные. Скалярные физические величины характеризуются только численным значением, тогда как векторные определяются и числом (модулем), и направлением. Скалярными физическими величинами являются время, температура, масса, векторны­ми - скорость, ускорение, сила.

Научное познание иначе называют научное исследование. Наука не только результат научного исследования, но и само исследование

Сложность научного познания определяется наличием в нем уровней, методов и форм познания.

Уровни познания:

  1. эмпирический
  2. теоретический.

Эмпирическое исследование (от греч. empeiria - опыт) - это опытное познание. Эмпирический уровень научного познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. На эмпирическом структурном уровне знания являются результатом непосредственного контакта с «живой» реальностью в наблюдении и эксперименте.

Теоретическое исследование (от греч. theoria - рассматриваю, исследую) представляет собой систему логических высказываний, включающих в себя математические формулы, схемы, графики и др., образованные для установления законов природных, технических и социальных явлений. К теоретическому уровню относятся все те формы и методы познания, которые обеспечивают создание, построение и разработку научной теории.

На теоретическом уровне прибегают к образованию понятий, абстракциям, идеализациям и мысленным моделям, строят гипотезы и теории, открывают законы науки.

Основные формы научного познания

  • факты,
  • проблемы,
  • эмпирические законы,
  • гипотезы,
  • теории.

Их значение - раскрывать динамику процесса познания в ходе исследования и изучения какого-либо объекта.

То есть фактически познание осуществляется в три этапа:

1) поиск, накопление научных фактов в круге исследуемых явлений;

2) осмысление накопленной информации, высказывание научных гипотез, построение теории;

3) экспериментальная проверка теории, наблюдения неизвестных ранее явлений, предсказываемых теорией и подтверждающих ее состоятельность.

На эмпирическом уровне с помощью наблюдения и эксперимента субъект получает научное знание прежде всего в форме эмпирических фактов.

Факт - достоверное знание, констатирующее, что произошло определенное событие, обнаружено определенное явление и т.п., но не объясняющее, почему это произошло (пример факта: ускорение свободно падающего тела равно 9.81 м/сек²)

Проблема возникает, когда вновь обнаруженные факты не удается объяснить и понять с помощью старых теорий

Эмпирический закон (устойчивое, повторяющееся в явлении) - результат обобщения, группировки, систематизации фактов.

Пример: все металлы хорошо проводят электрический ток;

На основе эмпирических обобщений формируется гипотеза.

Гипотеза - это предположение, позволяющее объяснить и количественно описать наблюдаемое явление. Гипотеза относится к теоретическому уровню познания.



Если гипотеза подтверждается, то она превращается из вероятностного знания в достоверное, т.е. в теорию.

Создание теории – высшая и конечная цель фундаментальной науки

Теория представляет собой систему истинного, уже доказанного, подтвержденного знания о сущности явлений, высшую форму научного знания.

Важнейшие функции теории: объяснение и предсказание.

Эксперимент является критерием истинности гипотез и научных теорий.

Методы научного познания.

Большую роль в научном познании играет научный метод.

Рссмотрим сначала, что такое метод вообще.

Метод (греч. - «путь», «способ»)

В самом широком смысле слова под методом понимают путь, способ достижения какой-либо цели.

Метод – это форма практического и теоретического освоения действительности, исходящая из закономерностей поведения изучаемого объекта.

Любая форма деятельности опирается на некоторые методы, от выбора которых существенно зависит ее результат. Метод оптимизирует деятельность человека, вооружает человека наиболее рациональными способами организации его деятельности.

Научный метод - это организация средств познания (приборов, инструментов, приемов, операций и др.) для достижения научной истины.

Классификация методов по уровням познания:

К эмпирическому уровню познания относятся методы: наблюдение, эксперимент, предметное моделирование, измерение, описание полученных результатов, сравнение и др.

Наблюдение представляет собой чувственное отражение объектов и явлений, в ходе которого человек получает первичную информацию об окружающем мире. Главное в наблюдении не вносить при исследовании какие-либо изменения в изучаемую реальность.

Наблюдение предполагает наличие определенного плана исследования, предположение, подвергаемое анализу и проверке. Результаты наблюдения фиксируются в описании, отмечающем те признаки и свойства изучаемого объекта, которые являются предметом изучения. Описание должно быть максимально полным, точным и объективным. На их основе создаются эмпирические обобщения, систематизация и классификация.

Эксперимент целенаправленное и строго контролируемое воздействие исследователя на интересующий объект или явление для изучения его различных сторон, связей и отношений. При этом объект или явление ставятся в особые специфические и варьируемые условия. Специфика эксперимента состоит также в том, что он позволяет увидеть объект или процесс в чистом виде

К теоретическому уровню познания относятся методы: формализация, абстрагирование, идеализация, аксиоматизация, гипотетико-дедуктивный, и т.д.

Классификация методов по сфере использования:

1. всеобщие - применение во всех отраслях человеческой деятельности

  • метафизический
  • диалектический

2. общенаучные - применение во всех областях науки:

  • Индукция – способ рассуждения или метод получения знания, при котором общий вывод делается на основе обобщения частных ссылок (Фрэнсис Бэкон).

· Дедукция - форма умозаключения от общего к частному и единичному (Рене Декарт).

· Анализ - метод научного познания, в основе которого лежит процедура мысленного или реального разделения объекта на составляющие его части и их отдельное изучение.

· Синтез - метод научного познания, в основе которого лежит объединение выделенных анализом элементов.

· Сравнение - метод научного познания, позволяющий установить сходство и различие изучаемых объектов

· Классификация - метод научного познания, который объединяет в один класс объекты, максимально сходные друг с другом в существенных признаках.

· Аналогия – прием познания, при котором наличие сходства, совпадение признаков нетождественных объектов позволяет предположить их сходство и в других признаках.

· Абстрагирование – прием мышления, заключающийся в отвлечении от несущественных, незначимых для субъекта познания свойств и отношений исследуемого объекта с одновременным выделением тех его свойств, которые представляются важными и существенными в контексте исследования.

· Моделирование – метод замещения изучаемого объекта подобным ему по ряду интересующих исследователя свойств и характеристик. В современных исследованиях используют различные виды моделирования: предметное, мысленное, символическое, компьютерное.

3. Конкретно-научные методы - применение в отдельных разделах науки.

Разнообразие методов научного познания создает трудности в их применении и понимании их роли. Эти проблемы решаются особой областью знания - методологией.

Методология - учение о методах. Ее задачи - изучение происхождения, сущности, эффективности и других характеристик методов познания.

Методология научного познания - учение о принципах построения, формах и способах научно-познавательной деятельности.

Она дает характеристику компонентов научного исследования - его объекта, предмета анализа, задачи исследования (или проблемы), совокупности исследовательских средств, необходимых для решения задачи данного типа, а также формирует представление о последовательности действий исследователя в процессе решения задачи.

Эволюционные и революционные периоды развития естествознания. Определение научной революции, ее этапы и виды.

Развитие естествознания не является лишь монотонным процессом количественного накопления знаний об окружающем природном мире (эволюционный этап).

В развитии науки наблюдаются переломные этапы (научные революции), радикально меняющие прежнее видение мира.

Само понятие «революция» свидетельствует о коренной ломке существующих представлений о природе в целом; возникновении кризисных ситуаций в объяснении фактов.

Научная революция - это закономерный и периодически повторяющийся в истории процесс качественного перехода от одного способа познания к другому, отражающему более глубинные связи и отношения природы.

Научные революции по своей значимости могут выходить далеко за рамки той конкретной области, где они произошли.

Различают общенаучные и частнонаучные революции.

Общенаучные: гелиоцентрическая система мира Н. Коперника, классическая механика Ньютона, теория эволюции Дарвина, возникновение квантовой механики и др.

Частнонаучные:- появление микроскопа в биологии, телескопа в астрономии.

Научная революция имеет свою структуру, основные этапы развития.

  1. формирование непосредственных предпосылок (эмпирических, теоретических, ценностных) нового способа познания в недрах старого.
  2. непосредственное развитие нового способа познания.
  3. утверждение качественно нового способа познания.

Научная картина мира (нкм) - одно из основополагающих понятий в естествознании.

По своей сути научная картина мира - это особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий . Это целостная система представлений об общих свойствах и закономерностях природы.

Научная картина мира включает в себя важнейшие достижения науки, создающие определен-ное понимание мира и места человека в нем.

Фундаментальные вопросы, на которые отвечает научная картина мира:

О материи

О движении

О взаимодействии

О пространстве и времени

О причинности, закономерности и случайности

О космологии (общем устройстве и происхождении мира

Будучи целостной системой представлений об общих свойствах и закономерностях объективного мира, научная картина мира существует как сложная структура, включающая в себя в качестве составных частей общенаучную картину мира, естественнонаучную картину мира и картины мира отдельных наук (физическая, биологическая, геологическая и т.п.).

Основой современной научной картины мира являются фундаментальные знания, полученные, прежде всего, в области физики. Однако в последние десятилетия прошлого века все больше утверждалось мнение, что в современной научной картине мира лидирующее положение занимает биология. Идеи биологии постепенно приобретают универсальный характер и становятся фундаментальными принципами других наук. В частности, в современной науке такой универсальной идеей является идея развития, проникновение которой в космологию, физику, химию, антропологию, социологию и т.д. привело к существенному изменению взглядов человека на мир.

ИСТОРИЧЕСКИЕ ЭТАПЫ ПОЗНАНИЯ ПРИРОДЫ

По мнению историков науки в развитии естествознания различают 4 этапа:

1. Натурфилософский (доклассический) – 6 в. до н.э-2 в.н.э.

2. аналитический (классический)–16-19 в.в.)

3. синтетический (неклассический) – конец 19 века - 20 век

4. интегрально - дифференциальный (постнеклассический) - конец 20 века - начало 21 века.

В первобытную эпоху происходило накопление стихийно-эмпирических знаний о природе.

Сознание человека этой эпохи было двухуровневым:

· уровень обыденного повседневного знания;

· уровень мифотворчества как формы систематизации повседневного знания.

Формирование первой научной картины мира происходит в древнегреческой культуре - натурфилософская картина мира.

К наиболее значительным открытиям Эпохи Возрождения относятся: экспериментальное изучение законов движения планет, создание гелиоцентрической системы мира Н. Коперника, изучение законов падения тел, закон инерции и принцип относительности Галилея.

Вторая половина 17 века - законы механики и закон всемирного тяготения Ньютона.

Идеалом научного познания в XVII-XIX веках была механика.

В 17-18 в.в. в математике разрабатывается теория бесконечно малых величин (Ньютон, Лейбниц), Р. Декарт создает аналитическую геометрию, М.В. Ломоносов – молекулярно-кинетическое учение. Широкую популярность завоевывает космогоническая теория Канта-Лапласа, что способствует внедрению идеи развития в естественные, а затем и в общественные науки.

К рубежу XVIII - XIX вв . частично прояснилась природа электричества (закон Кулона).

В конце 18- первой половине 19 в. в геологии возникает теория развития Земли (Ч. Лайель), в биологии зарождается эволюционная теория Ж.Б. Ламарка, развиваются такие науки, как палеонтология (Ж.Кювье) и эмбриология (К.М. Бэро).

В 19 в . были созданы клеточная теория Шванна и Шлейдена, эволюционное учение Дарвина, Периодическая система элементов Д.И. Менделеева, электромагнитная теория Максвелла.

К выдающимся экспериментальным открытиям в физике в конце 19 века относятся: открытие электрона, делимости атома, экспериментальное обнаружение электромагнитных волн, открытие рентгеновских лучей, катодных лучей и др.

ФИЗИЧЕСКАЯ КАРТИНА МИРА

Слово "физика" появилось еще в древние времена. В переводе с греческого оно означает "природа".

Физика является основой всех естественных наук.

Физика - наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира.

В современном представлении:

  • самое простое - так называемые первичные элементы: элементарные частицы, поля, атомы, молекулы, и т.п.
  • наиболее общие свойства материи - движение, пространство и время, масса, энергия и др.

Конечно, физика изучает и очень сложные явления и объекты. Но при изучении сложное сводится к простому, конкретное - к общему.

К наиболее общим, важным фундаментальным концепциям физического описания природы относится материя, движение, пространство и время.

Материя (лат. Materia – вещество) это философская категория для обозначения объективной реальности, которая отображается нашими ощущениями, существуя независимо от них”. (Ленин В.И. Полное собрание сочинений. Т.18. С.131.)

Одно из современных определений материи:

Материя – бесконечное множество всех сосуществующих в мире объектов и систем, совокупность их свойств и связей, отношений и форм движения.

В основе современных научных представлений о строении материи лежит идея ее сложной системной организации.

На современном этапе развития естествознания исследователи различают следующие

виды материи : вещество, физическое поле и физический вакуум.

Вещество – основной вид материи, обладающий массой покоя (элементарные частицы, атомы, молекулы и то, что из них построено);

Физическое поле - особый вид материи, обеспечивающий физическое взаимодействие материальных объектов и их систем (электромагнитное, гравитационное).

Физический вакуум – не пустота, а особое состояние материи , это низшее энергетическое состояние квантового поля. В нем постоянно происходят сложные процессы, связанные с непрерывным появлением и исчезновением так называемых "виртуальных " частиц.

Различие вещества и поля не является абсолютным и при переходе к микрообъектам ярко обнаруживается его относительность

Современная наука выделяет в мире три структурных уровня .

Микромир это молекулы, атомы, элементарные частицы, мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 с.

Макромир - мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта, пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звезды, галактики, Вселенная, мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро- , макро - и мегамиры теснейшим образом взаимосвязаны.

Механистическая картина мира (МКМ)

Первая естественнонаучная картина мира сформировалась на основе изучения простейшей, механической формы движения материи. Она исследует законы перемещения земных и небесных тел в пространстве и времени. В дальнейшем, когда эти законы и принципы были перенесены на другие явления и процессы, они стали основой механистической картины мира.
Анализ физических явлений макромира базируется на концепции классической механики.

Созданием классической механики наука обязана Ньютону, но почву для него подготовили Галилей и Кеплер.

Классическая механика описывает движения макротел при скоростях намного меньших, чем скорость света.

Раньше других разделов механики стала развиваться статика (учение о равновесии) (античность, Архимед: «дайте мне точку опоры и я переверну Землю»).

В XVII в. были созданы научные основы динамики (учение о силах и их взаимодействии), а с ней и всей механики.

Основоположником динамики считают Г. Галилея.

Галилео Галилей (1564-1642). Один из основателей современного естествознания Ему принадлежат: доказательство вращения Земли, открытие принципа относительности движения и закона инерции, законов свободного падения тел и их движения по наклонной плоскости, законов сложения движений и поведения математического маятника. Он же изобрел телескоп и с его помощью исследовал ландшафт Луны, обнаружил спутники Юпитера, пятна на Солнце и фазы Венеры.

В учении Г. Галилея были заложены основы нового механистического естествознания. Ему принадлежит выражение «Книга природы написана на языке математики». Ввел понятие «мысленный эксперимент».

Главная заслуга Галилея в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерениями исследуемых величин и математической обработкой результатов измерений.

Самая фундаментальная проблема, остававшаяся в течение тысячи лет неразрешимой из-за сложности – это проблема движения (А. Эйнштейн).

До Галилея общепринятым в науке считалось понимание движения, выработанное Аристотелем и сводившееся к следующему принципу, тело движется только при наличии внешнего на него воздействия, и если это воздействие прекращается, тело останавливается . Галилей показал, что этот принцип Аристотеля ошибочен. Вместо него Галилей сформулировал совершенно иной принцип, получивший впоследствии наименование принципа (закона) инерции.

Закон инерции (первый закон механики Ньютона): материальная точка, когда на нее не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения.

Инерциальная система - система отсчета, в которой справедлив закон инерции.

Принцип относительности Галилея - Во всех инерциальных системах применимы одни и те же законы механики. Никакими механическими опытами, проводящимися в какой-то инерциальной системе отсчета, нельзя определить, покоится данная система или движется равномерно и прямолинейно.

Галилей писал: "…в каюте корабля, движущегося равномерно и без качки, вы не обнаружите ни по одному из окружающих явлений, ни по чему-либо, что станет происходить с вами самими, движется ли корабль или стоит неподвижно".

Переводя на сегодняшний язык, понятно, что если вы спите на 2-й полке движущегося равномерно вагона, то вам трудно понять, едете ли вы или просто вас покачивает. Но… как только поезд затормозит (неравномерное движение с отрицательным ускорением!) и вы слетите с полки, …то вы четко скажете – мы ехали.

Создание основ классической механики завершается трудами И. Ньютона, сформулировавшего главные ее законы и открывшего закон всемирного тяготения в труде «Математические начала натуральной философии» (1687 г.)

Среди открытий Ньютона (1643-1727): знаменитые законы динамики, закон всемирного тяготения, создание (одновременно с Лейбницем) новых математических методов - дифференциального и интегрального исчислений, ставших фундаментом высшей математики; изобретение телескопа-рефлектора, открытие спектрального состава белого света и др.

Законы механики И. Ньютона

  1. всякое тело сохраняет состояние покоя или прямолинейного равномерного движения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил (это принцип инерции, впервые сформулированный еще Галилеем);
  2. ускорение (a), приобретаемое телом под действием какой-то силы (f) прямо пропорциональноэтой силе и обратно пропорционально массе тела (m);
  1. действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны . (это закон равенства действия и противодействия).

f 1 =- f 2

Большое значение для понимания явлений макромира имеет теория тяготения Ньютона. Окончательная формулировка закона всемирного тяготения была сделана в 1687 г.

Закон тяготения Ньютона:

две любые материальные частицы притягиваются по направлению друг к другу с силой прямо пропорциональной произведению масс и обратно пропорциональной квадрату расстояния между ними .

F=G.(m 1 .m 2 /r 2)

На поверхность Земли все тела падают под влиянием ее поля тяготения с одинаковым ускорением свободного падением g=9,8 м/сек 2 .

Ключевыми в физике Ньютона являются понятия абсолютного пространства и абсолютного времени, которые представляют собой как бы вместилища материальных тел и процессов и не зависят не только от этих тел и процессов, но и друг от друга.

Итак, основные идеи классической механики таковы:

  1. есть тела, которые следует наделить свойством массы;
  2. массы притягиваются друг к другу (закон всемирного тяготения);
  3. тела могут сохранять свое состояние - покоиться или двигаться равномерно, не меняя своего направления движения (закон инерции, он же принцип относительности);
  4. при действии на тела сил они изменяют свое состояние: либо ускоряются, либо замедляются (второй закон динамики Ньютона);
  5. действие сил вызывает обратное равное ему противодействие (третий закон Ньютона).

Результатом развития классической механики явилось создание единой механистической картины мира , господствовавшей со второй половины 17 века вплоть до научной революции на рубеже 19 и 20 столетий.

Механика в это время рассматривалась как универсальный метод познания окружающих явлений и эталон всякой науки вообще. Механика – лидер естествознания в этот период.

Классическая механика представляла мир в виде гигантского механизма, четко функционирующего на основе ее вечных и неизменных законов

Это приводило к стремлению к завершенной системе знаний, фиксирующей истину в окончательном виде.

В этом абсолютно предсказуемом мире и живой организм понимался как механизм.

Основные научные положения механистической картины мира:

1. Единственная форма материи – вещество, состоящее из дискретных частиц (корпускул) конечных объемов, единственная форма движения - механическое перемещение в пустом трехмерном пространстве;

2. абсолютное пространство и абсолютное время;

3. три закона динамики Ньютона управляют движениями тел;

4. четкая причинно-следственная связь событий (так называемый лапласовский детерминизм);

5. уравнения динамики обратимы во времени, т. е. для них безразлично, куда развивается процесс из настоящего времени - в будущее или прошлое.

Классическая механика дала четкие ориентиры в понимании фундаментальных категорий - пространства, времени и движения материи.

Электромагнитная картина мира (ЭМКМ)

В предисловии к своему знаменитому труду «Математические начала натуральной философии» И. Ньютон высказал следующую установку на будущее: Было бы желательно вывести из начал механики и остальные явления природы...

Многие естествоиспытатели вслед за Ньютоном старались объяснить исходя из начал механики самые различные природные явления. В торжестве законов Ньютона, считавшихся всеобщими и универсальными, черпали веру в успех ученые, работавшие в астрономии, физике, химии.

Как очередное подтверждение ньютоновского подхода к вопросу об устройстве мира, было первоначально воспринято физиками открытие, которое сделал французский военный инженер, Шарль Огюст Кулон (1736-1806). Оказалось, что положительный и отрицательный электрические заряды притягиваются друг к другу прямо пропорционально величине зарядов и обратно пропорционально квадрату расстояния между ними.

Работы в области электромагнетизма положили начало крушению механистической картины мира.

В 19 веке физики дополнили механистическую картину мира электромагнитной. Электрические и магнитные явления были известны им давно, но изучались обособленно друг от друга. Дальнейшее их исследование показало, что между ними существует глубокая взаимосвязь, что заставило ученых искать эту связь и создать единую электромагнитную теорию.

Английский химик и физик Майкл Фарадей (1791-1867) ввел в науку в 30 г. 19 в. понятие физического поля (электромагнитного поля). Ему удалось показать опытным путем, что между магнетизмом и электричеством существует прямая динамическая связь. Тем самым он впервые объединил электричество и магнетизм, признал их одной и той же силой природы. В результате в естествознании начало утверждаться понимание того, что кроме вещества, в природе существует еще и поле.

По мнению Фарадея, активная и постоянно движущаяся материя не может быть представлена в виде атомов и пустоты, материя непрерывна, атомы есть лишь сгустки силовых линий поля.

Электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами.

Математическую разработку идей Фарадея предпринял выдающийся английский ученый Джеймс Клерк Максвелл (1831-1879). Он во второй половине 19 в. на основе опытов Фарадея разработал теорию электромагнитного поля.

Введение Фарадеем понятия «электромагнитного» поля и математическое определение его законов, данное в уравнениях Максвелла, явились самыми крупными событиями в физике со времен Галилея и Ньютона.

Но потребовались новые результаты, чтобы теория Максвелла стала достоянием физики. Решающую роль в победе максвелловской теории сыграл немецкий физик Генрих Рудольф Герц (1857-1894). В 1887 г. Г. Герц экспериментально обнаружил электромагнитные волны.

Он смог также доказать принципиальную тождественность полученных им электромагнитных переменных полей и световых волн.

После экспериментов Герца в физике утвердилось понятие поля как объективно существующей физической реальности. Вещество и поле различаются по физическим характеристикам: частицы вещества обладают массой покоя, а частицы поля – нет. Вещество и поле различаются по степени проницаемости: вещество малопроницаемо, а поле проницаемо полностью. Скорость распространения поля равна скорости света, а скорость движения частиц на несколько порядков меньше.

Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

Позднее в ходе исследования микромира положение о веществе и поле как самостоятельных независимых друг от друга видах материи было поставлено под сомнение.

На этапе развития классической механики подразумевалось, что взаимодействие тел (напр. гравитационное) происходит мгновенно. Использовался принцип дальнодействия.

Дальнодействие - взаимодействие тел в физике, которое может осуществляться мгновенно непосредственно через пустое пространство.

Близкодействие - взаимодействие физических тел посредством тех или иных полей, непрерывно распределенных в пространстве.

Теория относительности А.Эйнштейна (1879-1955).

Из преобразований Галилея следует, что при переходе от одной инерциальной системы к другой такие величины как время, масса, ускорение, сила остаются неизменными, т.е. инвариантными, что и отражено в принципе относительности Г. Галилея.

После создания теории электромагнитного поля и экспериментального доказательства его реальности перед физикой встала задача выяснить, распространяется ли принцип относительности движения (сформулированный в свое время еще Галилеем) на явления, присущие электромагнитному полю.

Принцип относительности Галилея был справедлив для механических явлений. Во всех инерциальных системах (т.е. движущихся прямолинейно и равномерно друг по отношению к другу) применимы одно и те же законы механики. Но справедлив ли этот принцип, установленный для механических движений материальных объектов, для немеханических явлений, особенно тех, которые представлены полевой формой материи, в частности электромагнитных явлений?

Большой вклад в решение этого вопроса внесли исследования природы света и законов его распространения. В результате опытов Майкельсона в конце 19 в. было установлено, что скорость света в вакууме всегда одинакова (300000 км/cек) во всех системах отсчета и не зависит от движения источника и приемника света.

Специальная теория относительности (СТО).

Новая теория пространства и времени. Разработана А. Эйнштейном в 1905 г.

Главной идеей теории относительности является неразрывная связь понятий «материя, пространство и время».

СТО рассматривает движение тел с очень большими скоростями (близкими к скорости света, равной 300000 км/сек)

В основе СТО лежат два принципа или постулата.

1. Все физические законы должны выглядеть одинаковыми во всех инерциальных системах координат;

2. Скорость света в вакууме не изменяется при изменении состояния движения источника света.

Из постулатов СТО следует относительность длины, времени и массы , т.е. их зависимость от системы отсчета.

Следствия СТО

1. Существует предельная скорость передачи любых взаимодействий и сигналов из одной точки пространства в другую. Она равна скорости света в вакууме.

2. Нельзя рассматривать пространство и время как независимые друг от друга свойства физического мира.

Пространство и времясвязаны между собой и образуют единый четырехмерный мир (пространственно-временной континуум Минковского), являясь его проекциями. Свойства пространственно-временного континуума (метрика Мира, его геометрия) определяются распределением и движением материи

3.Все инерциальные системы равноправны. Следовательно, нет привилегированной системы отсчета, будь то Земля или эфир.

Движение тел со скоростями, близкими к скорости света приводит к релятивистским эффектам : замедление хода времени и сокращение длины быстродвижущихся тел; существование предельной скорости движения тела (скорость света); относительность понятия одновременности (два события происходят одновременно по часам в одной системе отсчета, но в разные моменты времени по часам в другой системе отсчета).

Общая теория относительности (ОТО)

Еще более радикальные изменения в учении о пространстве и времени произошли в связи с созданием общей теории относительности, которую нередко называют новой теорией тяготения, принципиально отличной от классической ньютоновской теории.

Согласно ОТО, которая получила завершенную форму в 1915 г. в работах А. Эйнштейна, свойства пространства-времени определяются действующими в ней полями тяготения. ОТО описывает тяготение как воздействие физической материи на геометрические свойства пространства-времени, а эти свойства влияют на движение материи и на другие свойства вещества.

ОТО основывается на двух постулатах СТО и формулирует третий постулат -

принцип эквивалентности инертной и гравитационной масс - утверждение, согласно которому поле тяготения в небольшой области пространства и времени по своему проявлению тождественно ускоренной системе отсчета.

Важнейшим выводом ОТО является положение об изменении геометрических (пространственных) и временных характеристик в гравитационных полях, а не только при движении с большими скоростями.

С точки зрения ОТО пространство не обладает постоянной (нулевой) кривизной. Кривизна пространства определяется полем тяготения.

Эйнштейн нашел общее уравнение гравитационного поля, которое в классическом приближении переходило в закон тяготения Ньютона.

Экспериментальным подтверждением общей теории относительности считаются : изменение орбиты Меркурия, искривление лучей света вблизи Солнца.

В рамках общей теории относительности Эйнштейна считается, что структура пространства-времени определяется распределением масс материи. Так, в классической механике принимается, что если бы вдруг все материальные вещи исчезли, то пространство и время остались бы. Согласно теории относительности, пространство и время исчезли бы вместе с материей.

Основные понятия и принципы электромагнитной картины мира.

  • Материя существует в двух видах: вещество и поле. Они строго разделены и их превращение друг в друга невозможно. Главным является поле, а значит основным свойством материи является непрерывность (континуальность) в противовес дискретности.
  • Понятия материя и движение неразрывны
  • Пространство и время связаны как между собой, так и с движущейся материей.

Основными принципами электромагнитной картины мира являются принцип относительности Эйнштейна, близкодействие, постоянство и предельность скорости света, эквивалентность инертной и гравитационной масс, причинность. (Какого-либо нового понимания причинности, по сравнению с механистической картиной мира, не произошло. Главными считались причинно-следственные связи и динамические законы, их выражающие.) Большое значение имело установление взаимосвязи массы и энергии (E = mc 2). Масса стала не только мерой инертности и гравитации, но и мерой содержания энергии. В результате два закона сохранения – массы и энергии – были объединены в один общий закон сохранения массы и энергии.

Дальнейшее развитие физики показало, что ЭМКМ имеет ограниченный характер. Главная трудность здесь заключалась в том, что континуальное понимание материи не согласовывалось с опытными фактами, подтверждающими дискретность многих её свойств – заряда, излучения, действия. Не удавалось объяснить соотношения между полем и зарядом, устойчивость атомов, их спектры, явление фотоэффекта, излучение абсолютно черного тела. Все это свидетельствовало об относительном характере ЭМКМ и необходимости замены её новой картиной мира.

Вскоре на смену ЭМКМ пришла новая – квантово-полевая картина Мира, в основе которой лежит новая физическая теория - квантовая механика, объединившая дискретность МКМ и непрерывность ЭМКМ.

Формирование квантовой механики. элементарные частицы

К началу XX столетия появились экспериментальные результаты, которые трудно было объяснить в рамках классических представлений. В этой связи был предложен совершенно новый подход - квантовый, основанный на дискретной концепции.

Физические величины, которые могут принимать лишь определенные дискретные значения, называются квантованными .

Квантовая механика (волновая механика) - физическая теория, устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем.

Существенным отличием квантовой механики от классической, является ее принципиально вероятностный характер.

Для классической механики характерно описание частиц путем задания их положения в пространстве (координат) и импульса (количества движения m.v). Такое описание не применимо для микрочастиц.

Квантовые представления впервые ввел в физику немецкий физик М Планк в 1900 г.

Он предположил, что свет испускается не непрерывно (как это следовало из классической теории излучения), а определенными дискретными порциями энергии - квантами.

В 1905 году А. Эйнштейном была выдвинута гипотеза о том, что свет не только испускается и поглощается, но и распространяется квантами.

Квант света называется фотоном. Этот термин ввел американский физико-химик Льюис в 1929 году.Фотон - частица, не имеющая массы покоя. Фотон всегда находится в движении со скоростью, равной скорости света.

Эффект Комптона . В 1922 году американский физик Комптон открыл эффект, в котором впервые во всей полноте проявились корпускулярные свойства электромагнитного излучения (в частности, света). Экспериментально было показано, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц.

В 1913 году Н. Бор применил идею квантов к планетарной модели атома.

Гипотезу о всеобщности корпускулярно-волнового дуализма выдвинул Луи де Бройль. Элементарные частицы - это и корпускулы и волны одновременно, а точнее - диалектическое единство свойств тех и других. Движение микрочастиц в пространстве и времени нельзя отождествлять с механическим движением макрообъекта. Движение микрочастиц подчиняется законам квантовой механики.

Окончательное формирование квантовой механики как последовательной теории связано с работой Гейзенберга 1927 года, в которой был сформулирован принцип неопределенностей, утверждающий, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные точные значения.

До открытия элементарных частиц и их взаимодействий наука разграничивала два вида материи - вещество и поле. Однако развитие квантовой физики выявило относительность разграничительных линий между веществом и полем.

В современной физике поля и частицы выступают как две неразрывно связанные стороны микромира, как выражение единства корпускулярных (дискретных) и волновых (континуальных, непрерывных) свойств микрообъектов. Представления о поле выступают также как основа для объяснения процессов взаимодействия, воплощая принцип близкодействия.

Еще в конце XIX-начале XX века поле определяли как непрерывную материальную среду, а вещество - как прерывное, состоящее из дискретных частиц.

Элементарные частицы , в точном значении этого термина, - это первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. Элементарные частицы современной физики не удовлетворяют строгому определению элементарности, поскольку большинство из них по современным представлениям являются составными системами.

Первая элементарная частица - электрон был открыт Дж,Дж. Томсоном в 1897 г.

После электрона было предположено существование фотона (1900 г)– кванта света.

Затем следует открытие целого ряда других частиц: нейтрона, мезонов, гиперонов и т.д.

В 1928 г. Дирак предсказал существование частицы, имеющей ту же массу, что и электрон, но с противоположным зарядом. Эту частицу назвали позитроном. И она действительно

была обнаружена в 1932 году в составе космических лучей американским физиком Андерсоном.

Современной физике известно более 400 элементарных частиц, в основном нестабильных, и их число продолжает расти.

Существуютчетыре вида основных фундаментальных физических взаимодействий:

  1. гравитационное - характерно для всех материальных объектов вне зависимости от их природы.
  2. электромагнитн ое - ответственно за связь электронов и ядер в атомах и связь атомов в молекулах .
  3. сильное - скрепляет нуклоны (протоны и нейтроны) в ядре и кварки внутри нуклонов .,
  4. слабое -управляет процессами радиоактивного распада частиц.

По типам взаимодействия элементарные частицы делят на

  1. Адроны (тяжелые частицы - протоны, нейтроны, мезоны и др.) участвуют во всех взаимодействиях.
  2. Лептоны (от греч. leptos - легкий; например, электрон, нейтрино и др.) не участвуют в сильных взаимодействиях, а только в электромагнитных, слабых и гравитационных.

При столкновениях элементарных частиц происходят всевозможные превращения их друг в друга (включая рождение многих дополнительных частиц), не запрещаемые законами сохранения.

Фундаментальные взаимодействия, преобладающие между объектами :

Микромира (сильное, слабое и электромагнитное)

Макромира (электромагнитное)

Мегамира (гравитационное)

Современная физика пока еще не создала единой теории элементарных частиц, на пути к ней сделаны лишь первые, но существенные шаги.

Великое объединение – это название используется для теоретических моделей, исходящих из представлений о единой природе сильного, слабого и электромагнитного взаимодействий

  1. открытие в ХVII в. законов механики позволило создать всю машинную технологию цивилизации;
  2. открытие в ХIХ в. электромагнитного поля, привело к развитию электротехники, радиотехники, а затем и радиоэлектроники;
  3. создание в ХХ в теории атомного ядра, привело к использованию ядерной энергии;

В рамках данной картины мира все События и Перемены были взаимосвязаны и взаимообусловлены механическим движением.

Возникновение электромагнитной картины мира характеризует качественно новый этап эволюции науки.

Сравнение данной картины мира с механистической выявляет некоторые важные особенности.

Например,

Подобная взаимодополнительность картин не является случайностью. Она носит строго эволюционный порядок.

Квантово-полевая картина мира явилась результатом дальнейшего развития электромагнитной картины мира.


Эта картина мира отражает уже единство двух предыдущих картин мира в единстве на основе принципа дополнительности. В зависимости от постановки эксперимента микрообъект показывает либо свою корпускулярную природу, либо волновую, но не обе сразу. Эти две природы микрообъекта взаимно исключают друг друга, и в то же время должны быть рассмотрены как дополняющие друг друга.

АСТРОНОМИЧЕСКАЯ КАРТИНА МИРА

Космос (от греч. Космос - мир), термин, идущий из древнегреческой философии для обозначения мира как структурно организованного и упорядоченного целого, в отличие от Хаоса.

Сейчас под Космосом понимают все находящееся за пределами атмосферы Земли. Иначе Космос называют Вселенной.

Вселенная - место вселения человека, весь существующий материальный мир. Близкое понятие (в латинских языках) «Универсум»

Вселенная - самая крупная материальная система, мегамир.

Космология (раздел астрономии ) - это наука о свойствах, строении, происхождении и эволюции Вселенной как единого упорядоченного целого.

Метагалактика - часть Вселенной, доступная современным астрономическим методам исследований.

В основе современной космологии лежит общая теория относительности и космологический постулат (представления об однородности и изотропности Вселенной). Во Вселенной все точки и направления равноправны.

Основной метод получения астрономических знаний - наблюдение, поскольку за редким исключением, эксперимент при изучении Вселенной невозможен.

Возникновение и эволюция Вселенной . Модель Большого взрыва

Проблема эволюции Вселенной является центральной в естествознании.

В классической науке (космология Ньютона) существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас.

Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации. Вопрос об эволюции Вселенной не ставился.

Возникновение современной космологии связано с созданием релятивистской теории тяготения - общей теории относительности Эйнштейном (1916). Из уравнений ОТО следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии).
В 1917 г. Эйнштейн вывел фундаментальные уравнения, связывающие распределение материи с геометрическими свойствами пространства и на их основе разработал модель Вселенной.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична , но при этом замкнута в пространстве, как поверхность любой сферы.

Однако из общей теории относительности вытекало в качестве следствия, что искривленное пространство не может быть стационарным, оно должно расширяться или сжиматься. Поэтому Эйнштейн ввел в полученные уравнения дополнительное слагаемое, обеспечивающее стационарность Вселенной.
В 1922 г. советский математик А.А Фридман впервые решил уравнения общей теории относительности не накладывая условия стационарности. Он создал модель нестационарной, расширяющейся Вселенной.

Этот вывод означал необходимость радикальной перестройки принятой в то время картины мира.

Модель Вселенной по Фридману носила эволюционный характер. Стало ясно, что Вселенная имеет начало и наблюдаемые сегодня ее свойства могут и должны быть объяснены предшествующим периодом развития.

Наблюдательным подтверждением модели расширяющейся Вселенной явилось открытие в 1929 году американским астрономом Э.Хабблом эффекта красного смещения .

Согласно эффекту Доплера спектры излучения удаляющихся объектов должны быть сдвинуты в красную область, а спектры приближающихся в фиолетовую.

Э.Хаббл установил, что все далекие галактики от нас удаляются, причем с увеличением расстояния это происходит всё быстрее.

Закон разбегания - это закон Хаббла V=H 0 r, где H 0 - постоянная, ныне называемая постоянной Хаббла.

Если Вселенная расширяется, значит она возникла в определенный момент времени.

Когда это произошло?

По значению постоянной Хаббла определяют возраст Вселенной. По современным данным он составляет 13-15 млрд. лет.

Как это произошло?

Еще А.А. Фридман пришел к выводу, что в силу каких-то пока не ясных причин Вселенная внезапно возникла в очень малом, практически точечном объеме чудовищной плотности и температуры и стала стремительно расширяться.

Наиболее общепринятой моделью Вселенной в современной космологии является модель однородной изотропной горячей нестационарной расширяющейся Вселенной.

В настоящее время большинство космологов исходят из модели Большого взрыва в ее модифицированном варианте с инфляционным началом.

В 1946 году он заложил основы одной из фундаментальных концепций современной космологии - модели "горячей Вселенной". («Большого взрыва»). Он впервые высказал предположение, что на начальной стадии эволюции Вселенная была "горячей" и в ней могли идти термоядерные процессы.

Эта модель объясняет поведение Вселенной в первые три минуты ее жизни, которые являются решающими для понимания современной структуры Вселенной.

Вселенная, согласно модели Большого Взрыва ограничена в пространстве и времени, по крайней мере, со стороны прошлого. До самого взрыва не существовало ни вещества, ни времени, ни пространства.

Итак, по современным воззрениям, Вселенная возникла в результате стремительного расширения, взрыва сверхплотного горячего вещества, обладавшего сверхвысокой температурой. Сам этот взрыв наука связывает с перестройками структуры физического вакуума, с его фазовыми переходами от одного состояния к другому, которые сопровождались выделением огромных энергий.

В последние десятилетия развитие космологии и физики элементарных частиц позволило теоретически рассмотреть и описать изменение физических параметров Вселенной в процессе ее расширения.

Основные этапы возникновения Вселенной.

Краткая история развития Вселенной

Краткая история развития Вселенной Время Температура Состояние Вселенной
10 -45 - 10 -37 сек > 10 26 K Инфляционное расширение (Инфляционная стадия )
10 -6 сек > 10 13 K Появление кварков и электронов
10 -5 сек 10 12 K Образование протонов и нейтронов
10 -4 сек - 3 мин 10 11 -10 9 K Возникновение ядер дейтерия, гелия и лития (эпоха нуклеосинтеза )
400 тыс. лет 4000 К Образование атомов (эпоха рекомбинации )
15 млн. лет 300 K Продолжение расширения газового облака
1 млрд. лет 20 K Зарождение первых звезд и галактик
3 млрд. лет 10 K Образование тяжелых ядер при взрывах звезд
10 - 15 млрд. лет 3 K Появление планет и разумной жизни

Сингулярность - особое начальное состояние Вселенной, в котором плотность, кривизна пространства и температура принимают бесконечное значение.

Инфляционная стадия - самая начальная сверхплотная стадия расширения Вселенной, завершилась к моменту времени 10 -36 сек.

Эпоха нуклеосинтеза. Спустя несколько секунд после начала расширения Вселенной началась эпоха, когда образовались ядра дейтерия, гелия, лития и бериллия.

Продолжалась эта эпоха приблизительно 3 минуты.

К концу этого процесса вещество Вселенной состояло на 75% из протонов (ядер водорода), около 25% составляли ядра гелия, сотые доли процента пришлись на ядра дейтерия, лития, бериллия.

Затем почти 500 тысяч лет не происходило никаких качественных изменений - шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной.

Эпоха рекомбинации - образование нейтральных атомов.

Наступила примерно через миллион лет после начала расширения. Когда Вселенная остыла до 3000 К, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия.

После эпохи рекомбинации вещество во Вселенной было распределено почти равномерно и состояло преимущественно из атомов водорода 75% и гелия 25%, самых распространенных элементов во Вселенной.

С эпохи рекомбинации взаимодействие излучения с веществом практически прекратилось, пространство стало для излучения практически прозрачным. Излучение, сохранившееся с начальных моментов эволюции (реликтовое) равномерно заполняет всю Вселенную. Вследствие расширения Вселенной температура этого излучения продолжает падать. В настоящее время она составляет 2,7 град К.

Модель горячей Вселенной (Большого Взрыва) подтверждается обнаружением предсказанного ею реликтового излучения, заполняющего Вселенную (1965 г).Американские ученые Пензиас и Уилсон за свое открытие удостоены Нобелевской премии в 1978 г.

Определение химического состава (особенно содержание гелия, дейтерия и лития) самых старых звезд и межзвездной среды молодых галактик также явилось подтверждением модели горячей Вселенной.

Основное количество водорода и гелиясодержится не в звездах, а распределено в межзвездном и межгалактическом пространстве.

После рекомбинации атомов вещество, заполняющее Вселенную, представляло собой газ, который вследствие гравитационной неустойчивости стал собираться в сгущения.

Результаты этого процесса мы видим в виде скоплений галактик, галактик и звезд. Структура Вселенной весьма непроста, и изучение механизма ее образования - это одна из самых интересных задач настоящего времени. Как ни странно, она далека от решения - мы более ясно представляем себе, что происходило в первые секунды после «большого взрыва», чем в период от миллиона лет до нашего времени.

Существуют альтернативные модели возникновения Вселенной.

Научное знание представляет собой систему, имеющую несколько уровней познания, различающихся по целому ряду параметров. В зависимости от предмета, характера, типа, метода и способа получаемого знания выделяют эмпирический и теоретический уровни познания. Каждый из них выполняет определенные функции и располагает специфическими методами исследования. Уровням соответствуют взаимосвязанные, но в то же время специфические виды познавательной деятельности: эмпирическое и теоретическое исследования. Выделяя эмпирический и теоретический уровни научного познания, современный исследователь отдает себе отчет в том, что если в обыденном познании правомерно различать чувственный и рациональный уровни, то в научном исследовании эмпирический уровень исследования никогда не ограничивается чисто чувственным знанием, теоретическое знание не представляет собой чистую рациональность. Даже первоначальные эмпирические знания, полученные путем наблюдения, фиксируются с использованием научных терминов. Теоретическое знание также не является чистой рациональностью. При построении теории используются наглядные представления, которые являются основой чувственного восприятия. Таким образом, можно сказать, что в начале эмпирического исследования преобладает чувственное, а в теоретическом – рациональное. На уровне эмпирического исследования не исключено выявление зависимостей и связей между явлениями, определенных закономерностей. Но если эмпирический уровень может уловить только внешнее проявление, то теоретический доходит до объяснения сущностных связей исследуемого объекта.

Эмпирические знания – результат непосредственного взаимодействия исследователя с реальностью в наблюдении или эксперименте. На эмпирическом уровне происходит не только накопление фактов, но и их первичная систематизация, классификация, что позволяет выявлять эмпирические правила, принципы и законы, которые преобразуются в наблюдаемые явления. На этом уровне исследуемый объект отражается преимущественно во внешних связях и проявлениях. Сложность научного знания определяется наличием в нем не только уровней и методов познания, но и форм, в которых оно фиксируется и развивается. Основными формами научного познания являются факты, проблемы, гипотезы и теории. Их значение – раскрывать динамику процесса познания в ходе исследования и изучения какого-либо объекта. Установление фактов является необходимым условием успешности естественнонаучных исследований. Для построения теории факты должны быть не только достоверно установлены, систематизированы и обобщены, но и рассмотрены во взаимосвязи. Гипотеза – это предположительное знание, которое носит вероятностный характер и требует проверки. Если в ходе проверки содержание гипотезы не согласуется с эмпирическими данными, то оно отвергается. Если же гипотеза подтверждается, то можно говорить о ней с той или иной степенью вероятности. В результате проверки и доказательства одни гипотезы становятся теориями, другие уточняются и конкретизируются, третьи отбрасываются, если их проверка дает отрицательный результат. Основным критерием истинности гипотезы является практика в разных формах.



Научная теория – обобщенная система знаний, дающая целостное отображение закономерных и существенных связей в определенной области объективной реальности. Основная задача теории заключается в том, чтобы описать, систематизировать и объяснить все множество эмпирических фактов. Теории классифицируют как описательные, научные и дедуктивные. В описательных теориях исследователи формулируют общие закономерности на основе эмпирических данных. Описательные теории не предполагают логического анализа и конкретности доказательств (физиологическая теория И. Павлова, эволюционная теория Ч. Дарвина и др.). В научных теориях конструируют модель, замещающую реальный объект. Следствия теории проверяются экспериментом (физические теории и др.). В дедуктивных теориях разработан специальный формализованнный язык, все термины которого подвергаются интерпретации. Первая из них – «Начала» Евклида (сформулирована основная аксиома, потом к ней добавлены положения, логически выведенные из нее, и все доказательства проводятся на этой основе).

Главными элементами научной теории являются принципы и законы. Принципы представляют общие и важные подтверждения теории. В теории принципы играют роль первичных предпосылок, образующих ее основу. В свою очередь, содержание каждого принципа раскрывается с помощью законов. Они конкретизируют принципы, раскрывают механизм их действия, логику взаимосвязи, вытекающих из них следствий. Законы представляют собой форму теоретических утверждений, раскрывающих общие связи изучаемых явлений, объектов и процессов. При формулировании принципов и законов исследователю достаточно непросто уметь увидеть за многочисленными, часто совершенно непохожими внешне фактами именно существенные свойства и характеристики исследуемых свойств объектов и явлений. Трудность заключается в том, что в непосредственном наблюдении зафиксировать сущностные характеристики исследуемого объекта сложно. Поэтому прямо перейти с эмпирического уровня познания на теоретический нельзя. Теория не строится путем непосредственного обобщения опыта, поэтому следующим шагом становится формулирование проблемы. Она определяется как форма знания, содержанием которой является осознанный вопрос, для ответа на который имеющихся знаний недостаточно. Поиск, формулирование и решение проблем – основные черты научной деятельности. В свою очередь, наличие проблемы при осмыслении необъяснимых фактов влечет за собой предварительный вывод, требующий экспериментального, теоретического и логического подтверждения. Процесс познания окружающего мира представляет собой решение разного рода задач, возникающих в ходе практической деятельности человека. Эти проблемы решаются путем использования особых приемов – методов.

Метолы науки – совокупность приемов и операций практического и теоретического познания действительности.

Методы исследований оптимизируют деятельность человека, вооружают его наиболее рациональными способами организации деятельности. А. П. Садохин кроме выделения уровней познания при классификации научных методов учитывает критерий применяемости метода и выделяет общие, особенные и частные методы научного познания. Выделенные методы часто сочетаются и комбинируются в процессе исследования.

Общие методы познания касаются любой дисциплины и дают возможность соединить все этапы процесса познания. Эти методы используются в любой области исследования и позволяют выявлять связи и признаки исследуемых объектов. В истории науки исследователи к таким методам относят метафизический и диалектический методы. Частные методы научного познания – это методы, применяющиеся только в отдельной отрасли науки. Различные методы естествознания (физики, химии, биологии, экологии и т. д.) являются частными по отношению к общему диалектическому методу познания. Иногда частные методы могут использоваться за пределами тех отраслей естествознания, в которых они возникли. Например, физические и химические методы используются в астрономии, биологии, экологии. Часто исследователи применяют комплекс взаимосвязанных частных методов к изучению одного предмета. Например, экология одновременно пользуется методами физики, математики, химии, биологии. Частные методы познания связаны с особенными методами. Особенные методы исследуют определенные признаки изучаемого объекта. Они могут проявляться на эмпирическом и на теоретическом уровнях познания и быть универсальными.

Среди особенных эмпирических методов познания выделяют наблюдение, измерение и эксперимент.

Наблюдение представляет собой целенаправленный процесс восприятия предметов действительности, чувственное отражение объектов и явлений, в ходе которого человек получает первичную информацию об окружающем мире. Поэтому исследование чаще всего начинается с наблюдения, и лишь потом исследователи переходят к другим методам. Наблюдения не связаны с какой-либо теорией, но цель наблюдения всегда связана с некой проблемной ситуацией. Наблюдение предполагает наличие определенного плана исследования, предположение, подвергаемое анализу и проверке. Наблюдения используются там, где нельзя поставить прямой эксперимент (в вулканологии, космологии). Результаты наблюдения фиксируются в описании, отмечающем те признаки и свойства изучаемого объекта, которые являются предметом изучения. Описание должно быть максимально полным, точным и объективным. Именно описания результатов наблюдения составляют эмпирический базис науки, на их основе создаются эмпирические обобщения, систематизация и классификация.

Измерение – это определение количественных значений (характеристик) изучаемых сторон или свойств объекта с помощью специальных технических устройств. Большую роль в исследовании играют единицы измерения, с которыми сравниваются полученные данные.

Эксперимент – более сложный метод эмпирического познания по сравнению с наблюдением. Он представляет собой целенаправленное и строго контролируемое воздействие исследователя на интересующий объект или явление для изучения его различных сторон, связей и отношений. В ходе экспериментального исследования ученый вмешивается в естественный ход процессов, преобразует объект исследования. Специфика эксперимента состоит также в том, что он позволяет увидеть объект или процесс в чистом виде. Это происходит за счет максимального исключения воздействия посторонних факторов. Экспериментатор отделяет существенные факты от несущественных и тем самым значительно упрощает ситуацию. Такое упрощение способствует глубокому пониманию сути явлений и процессов и создает возможность контролировать многие важные для данного эксперимента факторы и величины. Для современного эксперимента характерны особенности: увеличение роли теории на подготовительном этапе эксперимента; сложность технических средств; масштабность эксперимента. Основная задача эксперимента заключается в проверке гипотез и выводов теорий, имеющих фундаментальное и прикладное значение. В экспериментальной работе при активном воздействии на исследуемый объект искусственно выделяются те или иные его свойства, которые и являются предметом изучения в естественных либо специально созданных условиях. В процессе естественнонаучного эксперимента часто прибегают к физическому моделированию исследуемого объекта и создают для него различные управляемые условия. С. X. Карпенков подразделяет экспериментальные средства по содержанию на следующие системы:

♦ систему, содержащую исследуемый объект с заданными свойствами;

♦ систему, обеспечивающую воздействие на исследуемый объект;

♦ измерительную систему.

С. Х. Карпенков указывает, что в зависимости от поставленной задачи данные системы играют разную роль. Например, при определении магнитных свойств вещества результаты эксперимента во многом зависят от чувствительности приборов. В то же время при исследовании свойств вещества, не встречающегося в природе в обычных условиях, да еще и при низкой температуре, важны все системы экспериментальных средств.

В любом естественнонаучном эксперименте выделяют такие этапы:

♦ подготовительный этап;

♦ этап сбора экспериментальных данных;

♦ этап обработки результатов.

Подготовительный этап представляет собой теоретическое обоснование эксперимента, его планирование, изготовление образца исследуемого объекта, выбор условий и технических средств исследований. Результаты, полученные на хорошо подготовленной экспериментальной базе, как правило, легче поддаются сложной математической обработке. Анализ результатов эксперимента позволяет оценить те или иные признаки исследуемого объекта, сопоставить полученные результаты с гипотезой, что очень важно при определении правильности и степени достоверности окончательных результатов исследования.

Для повышения достоверности полученных результатов эксперимента необходимы:

♦ многократная повторность измерений;

♦ совершенствование технических средств и приборов;

♦ строгий учет факторов, влияющих на исследуемый объект;

♦ четкое планирование эксперимента, позволяющее учесть специфику исследуемого объекта.

Среди особенных теоретических методов научного познания выделяют процедуры абстрагирования и идеализации. В процессах абстрагирования и идеализации формируются понятия и термины, используемые во всех теориях. Понятия отражают существенную сторону явлений, появляющуюся при обобщении исследования. При этом из объекта или явления выделяется только некоторая его сторона. Так, понятию «температура» может быть дано операционное определение (показатель степени нагретости тела в определенной шкале термометра), а с позиций молекулярно-кинетической теории температура – это величина, пропорциональная средней кинетической энергии движения частиц, составляющих тело. Абстрагирование – мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые считают несущественными. Таковы модели точки, прямой линии, окружности, плоскости. Результат процесса абстрагирования называется абстракцией. Реальные объекты в каких-то задачах могут быть заменены этими абстракциями (Землю при движении вокруг Солнца можно считать материальной точкой, но нельзя при движении по ее поверхности).

Идеализация представляет операцию мысленного выделения какого-то одного важного для данной теории свойства или отношения, мысленного конструирования объекта, наделенного этим свойством (отношением). В результате идеальный объект обладает только этим свойством (отношением). Наука выделяет в реальной действительности общие закономерности, которые существенны и повторяются в различных предметах, поэтому приходится идти на отвлечения от реальных объектов. Так образуются такие понятия, как «атом», «множество», «абсолютно черное тело», «идеальный газ», «сплошная среда». Полученные таким образом идеальные объекты в действительности не существуют, так как в природе не может быть предметов и явлений, имеющих только одно свойство или качество. При применении теории необходимо вновь сопоставить полученные и использованные идеальные и абстрактные модели с реальностью. Поэтому важны выбор абстракций в соответствии с их адекватностью данной теории и последующее исключение их.

Среди особенных универсальных методов исследований выделяют анализ, синтез, сравнение, классификацию, аналогию, моделирование. Процесс естественнонаучного познания совершается так, что мы сначала наблюдаем общую картину изучаемого объекта, при которой частности остаются в тени. При таком наблюдении нельзя познать внутреннюю структуру объекта. Для ее изучения мы должны разделить изучаемые объекты.

Анализ – одна из начальных стадий исследования, когда от цельного описания объекта переходят к его строению, составу, признакам и свойствам. Анализ – метод научного познания, в основе которого лежит процедура мысленного или реального разделения объекта на составляющие его части и их отдельное изучение. Невозможно познать сущность объекта, только выделяя в нем элементы, из которых он состоит. Когда путем анализа частности исследуемого объекта изучены, он дополняется синтезом.

Синтез – метод научного познания, в основе которого лежит объединение выделенных анализом элементов. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единственных знаний, полученных с помощью анализа. Он показывает место и роль каждого элемента в системе, их связь с другими составными частями. Анализ фиксирует в основном то специфическое, что отличает части друг от друга, синтез – обобщает аналитически выделенные и изученные особенности объекта. Анализ и синтез берут свое начало в практической деятельности человека. Человек научился мысленно анализировать и синтезировать лишь на основе практического разделения, постепенно осмысливая то, что происходит с объектом при выполнении практических действий с ним. Анализ и синтез являются компонентами аналитико-синтетического метода познания.

При количественном сопоставлении исследуемых свойств, параметров объектов или явлений говорят о методе сравнения. Сравнение – метод научного познания, позволяющий установить сходство и различие изучаемых объектов. Сравнение лежит в основе многих естественнонаучных измерений, составляющих неотъемлемую часть любых экспериментов. Сравнивая объекты между собой, человек получает возможность правильно познавать их и тем самым правильно ориентироваться в окружающем мире, целенаправленно воздействовать на него. Сравнение имеет значение, когда сравниваются действительно однородные и близкие по своей сущности объекты. Метод сравнения выделяет отличия исследуемых объектов и составляет основу любых измерений, то есть основу экспериментальных исследований.

Классификация – метод научного познания, который объединяет в один класс объекты, максимально сходные друг с другом в существенных признаках. Классификация позволяет свести накопленный многообразный материал к сравнительно небольшому числу классов, типов и форм и выявить исходные единицы анализа, обнаружить устойчивые признаки и отношения. Как правило, классификации выражаются в виде текстов на естественных языках, схем и таблиц.

Аналогия – метод познания, при котором происходит перенос знания, полученного при рассмотрении какого-либо объекта, на другой, менее изученный, но схожий с первым по каким-то существенным свойствам. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, причем сходство устанавливается в результате сравнения предметов между собой. Таким образом, в основе метода аналогии лежит метод сравнения.

Метод аналогии тесно связан с методом моделирования, который представляет собой изучение каких-либо объектов с помощью моделей с дальнейшим переносом полученных данных на оригинал. В основе этого метода лежит существенное сходство объекта-оригинала и его модели. В современных исследованиях используют различные виды моделирования: предметное, мысленное, символическое, компьютерное. Предметное моделирование представляет собой использование моделей, воспроизводящих определенные характеристики объекта. Мысленное моделирование представляет собой использование различных мысленных представлений в форме воображаемых моделей. Символическое моделирование использует в качестве моделей чертежи, схемы, формулы. В них в символико-знаковой форме отражаются определенные свойства оригинала. Видом символического моделирования является математическое моделирование, производимое средствами математики и логики. Оно предполагает формирование систем уравнений, которые описывают исследуемое природное явление, и их решение при различных условиях. Компьютерное моделирование получило широкое распространение в последнее время (Садохин А. П., 2007).

Разнообразие методов научного познания создает трудности в их применении и понимании их роли. Эти проблемы решаются особой областью знания – методологией. Основной задачей методологии является изучение происхождения, сущности, эффективности, развития методов познания.

Лучшие статьи по теме